• Title/Summary/Keyword: Subthreshold hump

Search Result 12, Processing Time 0.023 seconds

Study of MOSFET Subthreshold Hump Characteristics by Phosphorous Auto-doping

  • Lee, Jun-Gi;Kim, Hyo-Jung;Kim, Gwang-Su;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.319-319
    • /
    • 2012
  • 현재 폭넓게 이용되고 있는 STI (Shallow Trench Isolation) 공정에서 active edge 부분에 발생하는 기생 transistor의 subthreshold hump 특성을 제어하는 연구가 활발히 이루어지고 있다. 일반적으로 STI 공정을 이용하는 MOSFET에서 active edge 부분의 얇게 형성된 gate oxide, sharp한 active edge 형성, STI gap-fill 공정 중에 생기는 channel dopant out-diffusion은 subthreshold hump 특성의 주된 요인이다. 이와 같은 문제점을 해결하기 위해 active edge rounding process와 channel dopant compensation의 implantation을 이용하여 subthresold hump 특성 개선을 연구하였다. 본 연구는 STI 공정에 필요한 wafer와 phosphorus를 함유한 wafer를 한 chamber 안에서 auto-doping하는 방법을 이용하여 subthresold hump 특성을 구현하였다. phosphorus를 함유한 wafer에서 빠져나온 phosphorus가 STI 공정중인 wafer로 침투하여, active edge 부분의 channel dopant인 boron 농도를 상대적으로 낮춰 active edge 부분의 가 감소하고 leakage current를 증가시킨다. transistor의 channel length, gate width이고, wafer#No가 클수록 phosphorous를 함유한 wafer까지의 거리는 가까워진다. wafer #01은 hump 특성이 없고, wafer#20은 에서 심한 subthreshold hump 특성을 보였다. channel length 고정, gate width를 ~으로 가변하여 width에 따른 영향을 실험하였다. active 부분에 대한 SCM image로 확인된 phosphorus에 의한 active edge 부분의 boron 농도 감소와 gate width vs curve에서 확인된 phosphorus에 의한 감소가 narrow width로 갈수록 커짐을 확인하였다.

  • PDF

Suppression Techniques of Subthreshold Hump Effect for High-Voltage MOSFET

  • Baek, Ki-Ju;Na, Kee-Yeol;Park, Jeong-Hyeon;Kim, Yeong-Seuk
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.522-529
    • /
    • 2013
  • In this paper, simple but very effective techniques to suppress subthreshold hump effect for high-voltage (HV) complementary metal-oxide-semiconductor (CMOS) technology are presented. Two methods are proposed to suppress subthreshold hump effect using a simple layout modification approach. First, the uniform gate oxide method is based on the concept of an H-shaped gate layout design. Second, the gate work function control method is accomplished by local ion implantation. For our experiments, $0.18{\mu}m$ 20 V class HV CMOS technology is applied for HV MOSFETs fabrication. From the measurements, both proposed methods are very effective for elimination of the inverse narrow width effect (INWE) as well as the subthreshold hump.

Anomalous Subthreshold Characteristics of Shallow Trench-Isolated Submicron NMOSFET with Capped p-TEOS/SiN

  • Lee, Hyung J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.18-20
    • /
    • 2002
  • In sub-l/4 ${\mu}{\textrm}{m}$ NMOSFET with STI (Shallow Trench Isolation), the anomalous hump phenomenon of subthreshold region, due to capped p-TEOS/SiN induced defect, is reported. The hump effect was significantly observed as channel length is reduced, which is completely different from previous reports. Channel boron dopant redistribution due to the defect should be considered to improve hump characteristics besides considerations of STI comer and recess. 130

Effect of rapid thermal annealing on interface trap density by using subthreshold slope technique in the FD SOI MOSFETs (완전 결핍 SOI MOSFET의 계면 트랩 밀도에 대한 급속 열처리 효과)

  • Jihun Oh;Cho, Won-ju;Yang, Jong-Heon;Kiju Im;Baek, In-Bok;Ahn, Chang-Geun;Lee, Seongjae
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.711-714
    • /
    • 2003
  • In this presentation, we investigated the abnormal subthreshold slope of the FD SOI MOSFETs upon the rapid thermal annealing. Based on subthreshold technique and C-V measurement, we deduced that the hump of the subthreshold slope comes from the abnormal D$_{it}$ distribution after RTA. The local kink in the interface trap density distribution by RTA drastically degrades the subthreshold characteristics and mini hump can be eliminated by S-PGA.A.

  • PDF

Hump Characteristics of 64M DRAM STI(Shallow Trench Isolated) NMOSFETs Due to Defect (64M DRAM의 Defect 관련 STI(Shallow Trench Isolated) NMOSFET Hump 특성)

  • Lee, Hyung-J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.291-293
    • /
    • 2000
  • In 64M DRAM, sub-1/4m NMOSFETs with STI(Shallow Trench Isolation), anomalous hump phenomenon of subthreshold region, due to capped p-TEOS/SiN interlayer induced defect, is reported. The hump effect was significantly observed as channel length is reduced, which is completely different from previous reports. Channel Boron dopant redistribution due to the defect should be considered to improve hump characteristics besides consideration of STI comer shape and recess.

  • PDF

Guide Lines for Optimal Structure of Silicon-based Pocket Tunnel Field Effect Transistor Considering Point and Line Tunneling (포인트 터널링과 라인 터널링을 모두 고려한 실리콘 기반의 포켓 터널링 전계효과 트랜지스터의 최적 구조 조건)

  • Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.167-169
    • /
    • 2016
  • The structure guide lines of pocket tunnel field effect transistor(TFET) considering Line and Point tunneling are introduced. As the pocket doping concentration or thickness increase, on-current $I_{on}$ increases. As the pocket thickness or gate insulator increase, subthreshold swing(SS) increases. Optimal structure reducing the hump effects should be proposed in order to enhance SS.

  • PDF

Comparative Investigation on Tunnel Field Effect transistors(TFETs) Structure (터널링 전계효과 트랜지스터 구조 특성 비교)

  • Shim, Un-Seong;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.616-618
    • /
    • 2016
  • Four types of structure of tunnel field-effect transistors (TFETs) have been investigated by TCAD simulation. Pocket and L-shaped TFETs are better performance than single-gate and double-gate TFETs in terms of on-current and subthreshold swing. New guideline of TFETs is presented for the structure design.

  • PDF

Characterizations of Interface-state Density between Top Silicon and Buried Oxide on Nano-SOI Substrate by using Pseudo-MOSFETs

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • The interface-states between the top silicon layer and buried oxide layer of nano-SOI substrate were developed. Also, the effects of thermal treatment processes on the interface-state distributions were investigated for the first time by using pseudo-MOSFETs. We found that the interface-state distributions were strongly influenced by the thermal treatment processes. The interface-states were generated by the rapid thermal annealing (RTA) process. Increasing the RTA temperature over $800^{\circ}C$, the interface-state density considerably increased. Especially, a peak of interface-states distribution that contributes a hump phenomenon of subthreshold curve in the inversion mode operation of pseudo-MOSFETs was observed at the conduction band side of the energy gap, hut it was not observed in the accumulation mode operation. On the other hand, the increased interface-state density by the RTA process was effectively reduced by the relatively low temperature annealing process in a conventional thermal annealing (CTA) process.

Comparative Investigation on 4 types of Tunnel Field Effect Transistors(TFETs) (터널링 전계효과 트랜지스터 4종류 특성 비교)

  • Shim, Un-Seong;Ahn, TaeJun;Yu, YunSeop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.869-875
    • /
    • 2017
  • Using TCAD simulation, performances of tunnel field-effect transistors (TFETs) was investigated. Drain current-gate voltage types of TFET structure such as single-gate TFET (SG-TFET), double-gate TFET (DG-TFET), L-shaped TFET (L-TFET), and Pocket-TFET (P-TFET) are simulated, and then as dielectric constant of gate oxide and channel length are varied their subthreshold swing (SS) and on-current ($I_{on}$) are compared. On-currents and subthreshold swings of the L-TFET and P-TFET structures with high electric constant and line tunneling were 10 times and 20 mV/dec more than those of the SG-TFET and DG-TFET using point tunneling, respectively. Especially, it is shown that hump effect which dominant current element changes from point tunneling to line tunneling, is disappeared in P-TFET with high-k gate oxide such as $HfO_2$. The analysis of 4 types of TFET structure provides guidelines for the design of new types of TFET structure which concentrate on line tunneling by minimizing point tunneling.

Study on Point and Line Tunneling in Si, Ge, and Si-Ge Hetero Tunnel Field-Effect Transistor (Si, Ge과 Si-Ge Hetero 터널 트랜지스터의 라인 터널링과 포인트 터널링에 대한 연구)

  • Lee, Ju-chan;Ann, TaeJun;Sim, Un-sung;Yu, YunSeop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.876-884
    • /
    • 2017
  • The current-voltage characteristics of Silicon(Si), Germanum(Ge), and hetero tunnel field-effect transistors(TFETs) with source-overlapped gate structure was investigated using TCAD simulations in terms of tunneling. A Si-TFET with gate oxide material $SiO_2$ showed the hump effects in which line and point tunneling appear simultaneously, but one with gate oxide material $HfO_2$ showed only the line tunneling due to decreasing threshold voltage and it shows better performance than one with gate oxide material $SiO_2$. Tunneling mechanism of Ge and hetero-TFETs with gate oxide material of both $SiO_2$ and $HfO_2$ are dominated by point tunneling, and showed higher leakage currents, and Si-TFET shows better performance than Ge and hetero-TFETs in terms of SS. These simulation results of Si, Ge, and hetero-TFETs with source-overlapped gate structure can give the guideline for optimal TFET structures with non-silicon channel materials.