DOI QR코드

DOI QR Code

Suppression Techniques of Subthreshold Hump Effect for High-Voltage MOSFET

  • Baek, Ki-Ju (Dept. of Semiconductor Eng., Chungbuk National University) ;
  • Na, Kee-Yeol (Dept. of Semiconductor Electronics, Chungbuk Provincial College) ;
  • Park, Jeong-Hyeon (DSD Division, Magnachip Semiconductor) ;
  • Kim, Yeong-Seuk (Dept. of Semiconductor Eng., Chungbuk National University)
  • Received : 2013.04.12
  • Accepted : 2013.06.22
  • Published : 2013.10.31

Abstract

In this paper, simple but very effective techniques to suppress subthreshold hump effect for high-voltage (HV) complementary metal-oxide-semiconductor (CMOS) technology are presented. Two methods are proposed to suppress subthreshold hump effect using a simple layout modification approach. First, the uniform gate oxide method is based on the concept of an H-shaped gate layout design. Second, the gate work function control method is accomplished by local ion implantation. For our experiments, $0.18{\mu}m$ 20 V class HV CMOS technology is applied for HV MOSFETs fabrication. From the measurements, both proposed methods are very effective for elimination of the inverse narrow width effect (INWE) as well as the subthreshold hump.

Keywords

References

  1. R. A. Bianchi, F. Monsieur, F. Blanchet, C. Raynaud, and O. Noblanc, "High voltage devices integration into advanced CMOS technologies," in IEDM Tech. Dig., pp. 137-140, 2008.
  2. K. Benaissa, G. Baldwin, S. Liu, P. Srinivasan, F. Hou, B. Obradovic,S. Yu, H. Yang, R. McMullan, V. Reddy, C. Chancellor, S. Venkataraman,H. Lu, S. Dey, and C. Cirba, "New cost-effective integration schemes enabling analog and highvoltage design in advanced CMOS SOC technologies," in Proc. Symp. VLSI Tech. Dig., pp. 221-222, 2010.
  3. T. Uhlig, A. Bemmann, C. Ellmers, F. Fürnhammer, M. Grob, Y.H. Hu, J. Liu, R.-R. Ludwig, M. Reinhold, M. Stoisiek, E. Votintseva, and M. Wittmaack, "A18 - a novel 0.18 μm smart power SOC IC technology for automotive applications," in Proc. of 19th ISPSD, pp. 237-240, 2007.
  4. L. A. Akers, "The inverse-narrow-width effect," IEEE Trans. Electron Device, vol. ED-7, no. 7, pp. 419-421, Jul., 1986.
  5. T. Oishi, K. Shiozawa, A. Furukawa, Y. Abe, and Y. Tokuda, "Isolation edge effect depending on gate length of MOSFET's with various isolation structures," IEEE Trans. Electron Devices, vol. 47, no. 4, pp. 822-827, Apr., 2000. https://doi.org/10.1109/16.830999
  6. A. Bryant, W. Haensch, S. Geissleer, J. Mandelman, D. Poindexter, and M. Steger, "The currentcarrying corner inherent to trench isolation," IEEE Trans. Electron Devices, vol. 14, no. 8, pp. 412- 414, Aug., 1993. https://doi.org/10.1109/55.225596
  7. N. Shigyo and R. Dang, "Analysis of an anomalous subthreshold current in a fully recessed oxide MOSFET using a three-dimensional device simulator," IEEE Trans. Electron Devices, vol. ED- 32, no. 2, pp.441-445, Feb., 1985.
  8. M.-J. Chen, J.-S. Ho, and T.-H. Huang, "Dependence of current match on back-gate bias in weakly inverted MOS transistors and its modeling," IEEE J. Solid-State Circuits, vol. 31, no.2, pp. 259-262, Feb., 1996. https://doi.org/10.1109/4.488004
  9. J. Pimbley and J. D. Meindl, "MOSFET scaling limits determined by subthreshold conduction," IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1711-1721, Sep. 1989. https://doi.org/10.1109/16.34233
  10. M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1440, May 1989. https://doi.org/10.1109/JSSC.1989.572629
  11. M. Nandakumar, A. Chatterjee, S. Sridhar, K. Joyner, M. Rodder, and I.-C. Chen, "Shallow trench isolation for advanced ULSI CMOS technologies," in IEDM Tech. Dig., pp. 133-136, 1998.
  12. C.-P. Chang, S. F. Shive, S. C. Kuehne,Y. Ma, H.Vuong, F. H. Baumann, M. Bude, E. J. Lloyd, C. S. Pai, M. A. Abdelgadir, R. Dail, C. T. Liu, K. P. Cheung, J. I. Colonell, W. Y. C. Lai, J. F. Miner, H. Vaidya, R. C. Liu, and J. T. Clemens, "Enabling STI for 0.1 ${\mu}m$ technologies and beyond", " in Proc. Symp. VLSI Tech. Dig., pp. 161-162, 1999.
  13. K. Horita, T. Kuroi, Y. Itoh, K. Shiozawa, K. Eikyu, K. Goto, Y. Inoue, and M. Inuish, "Advanced shallow trench isolation to suppress the inverse narrow channel effects for 0.24 ${\mu}m$ pitch isolation and beyond", in Proc. Symp. VLSI Tech. Dig., pp. 178-179, 2000.
  14. J. Kim, T. Kim, J. Park, W. Kim, B. Hong, and G. Yoon, "A shallow trench isolation using Nitric Oxide (NO)-annealed wall oxide to suppress inverse narrow width effect," IEEE Electron Device Lett., vol. 21, no. 12, pp. 575-577, Dec. 2000. https://doi.org/10.1109/55.887470
  15. E. Augendre, R.Rooyackers, D.Shamiryan, C.Ravit, M.Jurczak, and G.Badenes, "Controlling STIrelated parasitic conduction in 90 nm CMOS and below," in Proc. of 32nd ESSDERC, pp. 507-510, 2002.
  16. J. Lee, D. Ha, and K. Kim, "Novel cell transistor using retracted Si3N4-liner STI for the improvement of data retention time in gigabit density DRAM and beyond," IEEE Trans. Electron Devices, vol. 48, no. 6, pp. 1152-1158, Jun. 2001. https://doi.org/10.1109/16.925241
  17. G. Fuse, M. Fukumoto, A. Shinohara, S. Odanaka, M. Sasago, and T. Ohzone, "A new isolation method with boron-implanted sidewalls for controlling narrow-width effect," IEEE Trans. Electron Devices, vol. ED-34, no.2, pp. 356-360, Feb., 1987.
  18. E. K. C. Tee, D. K. Pal, T. S. Hua, H. Y. Hai, "High voltage NMOS double hump prevention by using baseline CMOS p-well implant," in Proc. of ICEDSA, pp. 289-293, 2010.
  19. B.-C. Park, S.-Y. Lee, D.-R. Chang, K.-I. Bang, S.- J. Kim, S.-B. Yi and E.-S. Jung, "A novel fermi level controlled high voltage transistor preventing sub-threshold hump", in Proc. of ISCAS, pp. 313- 316, 2008.

Cited by

  1. Improvement of radiation response of SiC MOSFETs under high temperature and humidity conditions vol.55, pp.10, 2016, https://doi.org/10.7567/JJAP.55.104101