• Title/Summary/Keyword: Substrate Efficiency

Search Result 1,026, Processing Time 0.03 seconds

Comparative study on response of thiocyanate shock load on continuous and fed batch anaerobic-anoxic-aerobic sequential moving bed reactors

  • Sahariah, B.P.;Chakraborty, S.
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • A comparative study on response of a toxic compound thiocyanate ($SCN^-$) was carried out in continuous and fed batch moving bed reactor systems. Both systems had three sequential anaerobic, anoxic and aerobic reactors and operated at same hydraulic retention time. Feed $SCN^-$ was first increased from 600 mg/L to 1,000 mg/L for 3 days (shock 1) and then from 600 to 1,200 mg/L for 3 days (shock 2). In anaerobic continuous reactor, increase of effluent COD (chemical oxygen demand) due to shock load was only 2%, whereas in fed batch reactor it was 14%. In anoxic fed batch reactor recovery was partial in terms of $SCN^-$, phenol, COD and $NO{_3}{^-}$-N and $NO{_2}{^-}$-N removals and in continuous reactor complete recovery was possible. In both systems, inhibition was more significant on aerobic reactors than anaerobic and anoxic reactors. In aerobic reactors ammonia removal efficiency deteriorated and damage was irreversible. Present study showed that fed batch reactors showed higher substrate removal efficiency than continuous reactors during regular operation, but are more susceptible to toxic feed shock load and in nitrifying reactor damage was irreversible.

The properties of TiC/Al surface alloy using a high power $CO_2$-laser (고출력 이산화탄소 레이저에 의한 TiC/Al 표면합금의 특성)

  • 송순달
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.133-137
    • /
    • 2001
  • The properties of TiC/Al surface alloy prepared using a high power $CO_2$-laser was investigated. To analyze this process, the physical properties between substrate [Al] and TiC powder were measured. Surface layer size profiles, optical absorption rate and powder efficiency were measured as afunction of the laser output in TiC/Al matrix. Regardless of TiC powder existence, the absorption rate in substrate Al was decreased when laser output increased. When the laser output increased in the range of 2kW to 4.5 kW, the powder efficiency increased from 4% to 12%. However, TiC powder were not melted in molten aluminum. As a result, increased powder particles easily penetrated to the surface layer and created a two phase states in the metal matrix.

  • PDF

Continuous Cultivation of Lactobacillus rhamnosus with Cell Recy-cling Using an Acoustic Cell Settler

  • Yang, Yun-Jeong;Hwang, Sung-Ho;Lee, Sang-Mok;Kim, Young-Jun;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.357-361
    • /
    • 2002
  • Continuous production of lactic acid from glucose by Lactobacillus rhamnosus with cell recycling using an acoustic cell settler was carried out. The performance of the system, such as the concentration of cell and product were compared with the control experiment without recycling. The acoustic settler showed cell separation efficiency of 67% during the continuous operation and the cell concentration in the fermentor with recycle exceeded that of the control by 29%. Com-pared with the control, tactic acid production was increased by 40%, while glucose consumption was only increased by 8%. The higher value of lactic acid production to substrate consumption (Yp/s, product yield coefficient) achieved by cell recycling is interpreted to indicate that the recycled cell mass consumes less substrate to produce the same amount of product than the control Within system environmental changes due to the longer mean cell residence time induced the cells maintaining the metabolic pathways to produce Less by-Product but more product, lactic acid.

A Study on the Fabrications and the Principal features of Solar Cell (CdS 태양전지의 제작과 그 특성에 관하여)

  • Kim, Myeong-Gi;Hong, Chang-Hui;Choe, Bu-Gwi
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.3
    • /
    • pp.18-23
    • /
    • 1978
  • In order to improve the efficiency of Cu2-xS-CdS PN junction type solar cell, a method of reducing the series resiatance is considered. In the fabrication of the thin film of Cu2-xS, what has the largest value of conductivity is fabricated at 250 $^{\circ}C$. The thin film of CdS which has beer fabricated at the temperature 250-30$0^{\circ}C$ of the substrate and 800-85$0^{\circ}C$ of evaporating material has the largest value of conductivity and also fairly good photoelectric characteristics. Therefore, the evaporated thin aim type CdS solar cell has been fabricated at the temperature 25$0^{\circ}C$ of the substrate and 800-85$0^{\circ}C$ of the evaporating material, and its efficiency is measured to he 6%.

  • PDF

In Vitro Selection of Hammerhead Ribozymes with Optimized Stems I and III

  • Sim, So-Yeong;Kim, Se-Mi;Kim, Ha-Dong;Ahn, Jeong-Keun;Lee, Young-Hoon;Cho, Bong-Rae;Park, In-Won
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.177-182
    • /
    • 1998
  • A pool of cis-acting hammerhead ribozymes randomized in their substrate recognition sequences was constructed. A variety of active cis-acting ribozymes which had various structures of stems I and III was selected from the pool by in vitro selection. The selected ribozymes were cloned and sequenced. The relationship between the cleavage efficiency and base-pairing in stems I and III of the selected ribozymes was investigated. The ribozymes with the smaller difference in folding energies between the active conformation and the stable but inactive conformation showed a tendency to have the better cleavage efficiency. The optimum length of stem I was 5 or 6 bases while the longer stem III, in general, appeared to be required for efficient cleavage. The specificity of the ribozyme reaction is discussed in terms of the length of stems I and III.

  • PDF

Evaluation of Efficiency on Glass Precision Machining by using Abrasive Water-jet (연마재 워터젯 가공을 이용한 유리 미세 가공 성능 평가)

  • Bahk, Yeon-Kyoung;Park, Kang-Su;Kim, Hyung-Hoon;Shin, Bo-Sung;Ko, Jong-Soo;Go, Jeung-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents an evaluation of efficiency on glass precision machining by using abrasive water-jet machine. In this study, problems of conventional water-jet machining are examined experimentally and are analysized numerically. Especially, the reason of whitening on the machined surface of biochip glass is determined. It is found that the mass flow rate of abrasive input and transverse speed of water-jet are key parameters to control the direct machining of micro hole and channel on a glass substrate. Based on results of experimental analysis, possibility of direct fabrication of micro holes and channels on a glass substrate is successfully confirmed.

Breadcrumb as a New Substrate for Trametes versicolor and Schizophyllum commune Submerged Cultivation

  • Ivanova, Tetiana S.;Bisko, Nina A.;Krupodorova, Tetiana A.;Barshteyn, Victor Yu.
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.67-72
    • /
    • 2014
  • A new substrate, breadcrumbs, was investigated for biomass accumulation, the pH of the cultural broth, the formation of primary metabolites such as the proteins and endopolysaccharides of Schizophyllum commune 1768 and Trametes versicolor 353, as well as its bioconversion efficiency. The results showed that S. commune gives more mycelial mass ($23.96{\pm}0.8g/l$) and in a shorter period (4 days) than T. versicolor ($15.76{\pm}0.5g/l$ in 5 days). The pH values changed from the initial 6.1 to 3.6 in S. commune cultural broth and to 4.4 in T. versicolor cultural broth. Maximal endopolysaccharide content in the mycelia of S. commune and T. versicolor were 7.13% and 6.42%, correspondingly. Crude protein content in S. commune mycelium was 18.83 % on the 4th day of cultivation, and 20.03%, in the mycelium of T. versicolor, on the 6th day of cultivation. Kinetic parameters for the quantitative estimation of cultivation efficiency were calculated for biomass, endopolysaccharide, and crude protein concentrations.

Analysis and Design of Planar Textile Resonator for Wearable Magnetic Resonance-Wireless Power Transfer (의복용 자기공진형 무선전력전송 시스템을 위한 평면형 직물공진기의 설계 및 연구)

  • Kang, Seok Hyon;Jung, Chang Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.119-126
    • /
    • 2016
  • In this paper, we proposed the planar textile resonator for constructing wearable MR-WPT system and analyzed the characteristic of textile substrates used in resonators. The planar textile resonators were designed to resonate at 1-10 MHz. The loop and coil were fabricated planar structure on textile substrate using conductive materials. Polyester fiber and cotton widely used in real life were chosen as textile resonators for wearable applications and copper tape and silver paste were used for fabricating planar loop and coil on textile substrate. For comparison analysis on transfer efficiency according to the types of textile, transmitter and receiver parts were symmetric. According to the result, for the highest transfer efficiency of wearable WPT system, the planar resonators have specifications of relative thick textile substrate with low permittivity and low surface resistance of conductive pattern. The performed experiments show that the planar textile resonator is possible to be used for resonator in wearable MR-WPT system.

Optimization of tetrahedral amorphous carbon (ta-C) film deposited with filtered cathodic vacuum arc through Taguchi robust design (다구찌 강건 설계를 통한 자장 여과 아크 소스로 증착된 사면체 비정질 탄소막의 최적화)

  • Kwak, Seung-Yun;Jang, Young-Jun;Ryu, Hojun;Kim, Jisoo;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.53-61
    • /
    • 2021
  • The properties of tetrahedral amorphous Carbon (ta-C) film can be determined by multiple parameters and comprehensive effects of those parameters during a deposition process with filtered cathodic vacuum arc (FCVA). In this study, Taguchi method was adopted to design the optimized FCVA deposition process of ta-C for improving deposition efficiency and mechanical properties of the deposited ta-C thin film. The influence and contribution of variables, such as arc current, substrate bias voltage, frequency, and duty cycle, on the properties of ta-C were investigated in terms of deposition efficiency and mechanical properties. It was revealed that the deposition rate was linearly increased following the increasing arc current (around 10 nm/min @ 60 A and 17 nm/min @ 100A). The hardness and ID/IG showed a correlation with substrate bias voltage (over 30 GPa @ 50 V and under 30 GPa @ 250 V). The scratch tests were conducted to specify the effect of each parameter on the resistance to plastic deformation of films. The analysis on variances showed that the arc current and substrate bias voltage were the most effective controlling parameters influencing properties of ta-C films. The optimized parameters were extracted for the target applications in various industrial fields.

Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지를 위한 과불소화 술폰산 복합막)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Vanadium redox flow batteries (VRFBs) using the electrolytes containing various vanadium ions in sulfuric acid as supporting solution are one of the energy storage devices in alternatively charging and discharging operation modes. The positive electrolyte contains $V^{5+}/V^{4+}$ and the negative electrolyte $V^{2+}/V^{3+}$ depending on the operation mode. To prevent the mixing of two solutions, proton exchange membranes are mainly used in VRFBs. Nafion 117 could be the most promising candidate due to the strong oxidative property of $V^{5+}$ ion, but causes high crossover of electroactive species to result in a decrease in coulombic efficiency. In this study, the composite membranes using Nafion ionomer and porous polyethylene substrate were prepared to keep good chemical stability and to decrease the cost of membranes, and were compared to the properties and performance of the commercially available electrolyte membrane, Nafion 117. As a result, the water uptake and ionic conductivity of the composite membranes increased as the thickness of the composite membranes increased, but those of Nafion 117 slightly decreased. The permeability of vanadium ions for the composite membranes significantly decreased compared to that for Nafion 117. In a single cell test for the composite membranes, the voltage efficiency decreased and the coulombic efficiency increased, finally resulting in the similar energy efficiency. In conclusion, the less cost of the composite membranes by decreasing 6.4 wt.% of the amount of perfluorinated sulfonic acid polymer due to the introduction of porous substrate and lower vanadium ion permeability to decrease self-discharge were achieved than Nafion 117.