DOI QR코드

DOI QR Code

Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery

바나듐 레독스 흐름 전지를 위한 과불소화 술폰산 복합막

  • Cho, Kook-Jin (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • 조국진 (상명대학교 공과대학 환경공학과) ;
  • 박진수 (상명대학교 공과대학 환경공학과)
  • Received : 2016.01.21
  • Accepted : 2016.01.27
  • Published : 2016.02.29

Abstract

Vanadium redox flow batteries (VRFBs) using the electrolytes containing various vanadium ions in sulfuric acid as supporting solution are one of the energy storage devices in alternatively charging and discharging operation modes. The positive electrolyte contains $V^{5+}/V^{4+}$ and the negative electrolyte $V^{2+}/V^{3+}$ depending on the operation mode. To prevent the mixing of two solutions, proton exchange membranes are mainly used in VRFBs. Nafion 117 could be the most promising candidate due to the strong oxidative property of $V^{5+}$ ion, but causes high crossover of electroactive species to result in a decrease in coulombic efficiency. In this study, the composite membranes using Nafion ionomer and porous polyethylene substrate were prepared to keep good chemical stability and to decrease the cost of membranes, and were compared to the properties and performance of the commercially available electrolyte membrane, Nafion 117. As a result, the water uptake and ionic conductivity of the composite membranes increased as the thickness of the composite membranes increased, but those of Nafion 117 slightly decreased. The permeability of vanadium ions for the composite membranes significantly decreased compared to that for Nafion 117. In a single cell test for the composite membranes, the voltage efficiency decreased and the coulombic efficiency increased, finally resulting in the similar energy efficiency. In conclusion, the less cost of the composite membranes by decreasing 6.4 wt.% of the amount of perfluorinated sulfonic acid polymer due to the introduction of porous substrate and lower vanadium ion permeability to decrease self-discharge were achieved than Nafion 117.

바나듐 레독스 흐름 전지는 황산 바탕용액 내 바나듐 이온을 함유하는 전해질을 활용하여 충전과 방전을 번갈아 운전하는 에너지 저장 장치 중 하나이다. 양극액엔 $V^{5+}$$V^{4+}$가 음극액엔 $V^{2+}$$V^{3+}$가 충전 또는 방전 모드에 따라 주로 존재하게 된다. 두 종류의 바나듐 용액이 혼액되는 것을 방지하기 위해 주로 수소이온교환막을 활용하여 전체 셀을 완성하게 된다. $V^{5+}$의 높은 산화력으로 현재 듀퐁사의 Nafion 117이 유력하나 바나듐 이온의 높은 크로스오버라는 단점을 극복해야 한다. 본 연구에서는 상기 단점을 극복할 뿐만 아니라 고가의 Nafion계 막의 가격을 저감하고 화학적 안정성을 지속적으로 유지하기 위해 다공성 폴리에틸렌 필름에 나피온 고분자를 함침하여 바나듐 레독스 흐름 전지용 복합막을 제조하였으며, 상용막인 Nafion 117과 성능을 비교 분석하였다. 복합막의 두께가 두꺼워질수록 함수율과 이온전도도가 증가 하였으나 Nafion 117에 비해 다소 낮은 성능을 확인하였으며, 바나듐 이온의 투과성은 현저히 줄어드는 것을 확인할 수 있었다. 충 방전 실험 결과, $190{\mu}m$ 두께의 나피온 복합막이 가장 좋은 성능을 보였으며, Nafion 117과 비교하여 전압효율은 낮아졌지만, 충 방전 효율이 높아져 전체적인 에너지 효율은 비슷하게 측정되었다. 또한 6.4% 중량비에 해당하는 지지체만큼의 과불소화 술폰산 고분자의 중량이 감소함에 따라 비용을 절감할 수 있었으며, 성능면에서는 바나듐 이온의 투과도를 낮추어 자가 방전 속도를 저하시키면서 충 방전 용량의 감소가 느려지는 것을 알 수 있었다.

Keywords

References

  1. W. Dai, L. Yu, Z. Li, J. Yan, L. Liu, J. Xi, and X. Qiu, 'Sulfonated Poly(Ether Ether Ketone)/Graphene Composite Membrane for Vanadium Redox Flow Battery', Electrochim. Acta, 132, 200 (2014). https://doi.org/10.1016/j.electacta.2014.03.156
  2. X. Teng, J. Dai, F. Bi, and G. Yin, 'Ultra-Thin Polytetrafluoroethene/Nafion/Silica Composite Membrane with High Performance for Vanadium Redox Flow Battery', J. Power Sources, 272, 113 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.060
  3. B. Yin, Z. Li, W. Dai, L. Wang, L. Yu, and J. Xi, 'Highly Branched Sulfonated Poly (Fluorenyl Ether Ketone Sulfone)s Membrane for Energy Efficient Vanadium Redox Flow Battery', J. Power Sources, 285, 109 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.102
  4. B. Hwang and K. Kim, 'Redox Pairs in Redox Flow Batteries', J. Korean Electrochem. Soc., 16, 99 (2013). https://doi.org/10.5229/JKES.2013.16.3.99
  5. S. Liu, L. Wang, Y. Ding, B. Liu, X. Han, and Y. Song, 'Novel Sulfonated Poly(Ether Ether Keton)/Polyetherimide Acid-Base Blend Membranes for Vanadium Redox Flow Battery Applications', Electrochim. Acta, 130, 90 (2014). https://doi.org/10.1016/j.electacta.2014.02.144
  6. Y. Li, H. Zhang, H. Zhang, J. Cao, W. Xu, and X. Li, 'Hydrophilic Porous Poly (sulfone) Membranes Modified by UV-Initiated Polymerization for Vanadium Flow Battery Application', J. Membr. Sci., 454, 478 (2014). https://doi.org/10.1016/j.memsci.2013.12.015
  7. S. K. Park, J. Shim, J. H. Yang, C. S. Jin, B. S. Lee, and J. D. Jeon, 'The Influence of Compressed Carbon Felt Electrodes on the Performance of a Vanadium Redox Flow Battery', Electrochim. Acta, 116, 447 (2014). https://doi.org/10.1016/j.electacta.2013.11.073
  8. A. Chromik, A. R. dos Santos, T. Turek, U. Kunz, T. Haring, and J. Kerres, 'Stability of Acid-Excess Acid-Base Blend Membranes in All-Vanadium Redox-Flow Batteries', J. Membr. Sci., 476, 148 (2015). https://doi.org/10.1016/j.memsci.2014.11.036
  9. X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, and Y. Dong, 'PbO 2-Modified Graphite Felt as the Positive Electrode for an All-Vanadium Redox Flow Battery', J. Power Sources, 250, 274 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.021
  10. Z. Li, W. Dai, L. Yu, J. Xi, X. Qiu, and L. Chen, 'Sulfonated Poly(Ether Ether Ketone)/Mesoporous Silica Hybrid Membrane for High Performance Vanadium Redox Flow Battery', J. Power Sources, 257, 221 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.127
  11. J. Xi, Z. Wu, X. Qiu, and L. Chen, 'Nafion/$SiO_2$ Hybrid Membrane for Vanadium Redox Flow Battery', J. Power Sources, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  12. J. Kim, J. D. Jeon, and S. Y. Kwak, 'Nafion-Based Composite Membrane with a Permselective Layered Silicate Layer for Vanadium Redox Flow Battery', Electrochem. Comm., 38, 68 (2014). https://doi.org/10.1016/j.elecom.2013.11.002
  13. S. S. Sekhon, J.-S. Park, and Y.-W Choi, 'A SAXS Study on Nanostructure Evolution in Water Free Membranes Containing Ionic Liquid: from Dry Membrane to Saturation', Phys. Chem. Chem. Phys., 12, 13763 (2010). https://doi.org/10.1039/c0cp00966k
  14. Y. Wang, S. Wang, M. Xiao, S. Song, D. Han, M. A. Hickner, Y. Meng, 'Amphoteric Ion Exchange Membrane Synthesized by Direct Polymerization for Vanadium Redox Flow Battery Application', Int. J. Hydrogen Energy, 39, 16123 (2014). https://doi.org/10.1016/j.ijhydene.2014.04.049
  15. B. Zhang, E. Zhang, G. Wang, P. Yu, Q. Zhao, and F. Yao, 'Poly(Phenyl Sulfone) Anion Exchange Membranes with Pyridinium Groups for Vanadium Redox Flow Battery Applications', J. Power Sources, 282, 328 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.070
  16. K.-W. Sung, S.-H. Shin, and S.-H. Moon, 'Characterization of Commercial Membranes for Non-Aqueous Vanadium Redox Flow Battery', Korean Chem. Eng. Res., 51, 615 (2013). https://doi.org/10.9713/kcer.2013.51.5.615

Cited by

  1. Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.107