• Title/Summary/Keyword: Subset R

Search Result 261, Processing Time 0.031 seconds

Simple Algorithm for Baseball Elimination Problem (야구 배제 문제의 단순 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • The baseball elimination problem(BEP) is eliminates teams that finishes the season in the early stage without play the remaining games because of the team never most wins even though all wins of remaining games. This problem solved by max-flow/min-cut theorem. But the max-flow/min-cut method has a shortcoming of iterative constructs the network for all of team and decides the min-cut for each network. This paper suggests ascending sort in wins game plus remaining games for each team, then the candidate eliminating team set K with lower 1/2 rank and most easy, simple, and fast computes the existence or not of subset R that a team elimination decision. As a result of various experimental data, this algorithm can be find all of elimination teams for whole data with fast and correct.

ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

  • Shiroyeh Payrovi;Yasaman Sadatrasul
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2023
  • Let R be a commutative ring, M be a Noetherian R-module, and N a 2-absorbing submodule of M such that r(N :R M) = 𝖕 is a prime ideal of R. The main result of the paper states that if N = Q1 ∩ ⋯ ∩ Qn with r(Qi :R M) = 𝖕i, for i = 1, . . . , n, is a minimal primary decomposition of N, then the following statements are true. (i) 𝖕 = 𝖕k for some 1 ≤ k ≤ n. (ii) For each j = 1, . . . , n there exists mj ∈ M such that 𝖕j = (N :R mj). (iii) For each i, j = 1, . . . , n either 𝖕i ⊆ 𝖕j or 𝖕j ⊆ 𝖕i. Let ΓE(M) denote the zero-divisor graph of equivalence classes of zero divisors of M. It is shown that {Q1∩ ⋯ ∩Qn-1, Q1∩ ⋯ ∩Qn-2, . . . , Q1} is an independent subset of V (ΓE(M)), whenever the zero submodule of M is a 2-absorbing submodule and Q1 ∩ ⋯ ∩ Qn = 0 is its minimal primary decomposition. Furthermore, it is proved that ΓE(M)[(0 :R M)], the induced subgraph of ΓE(M) by (0 :R M), is complete.

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

SUBSTITUTION OPERATORS IN THE SPACES OF FUNCTIONS OF BOUNDED VARIATION BV2α(I)

  • Aziz, Wadie;Guerrero, Jose Atilio;Merentes, Nelson
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.649-659
    • /
    • 2015
  • The space $BV^2_{\alpha}(I)$ of all the real functions defined on interval $I=[a,b]{\subset}\mathbb{R}$, which are of bounded second ${\alpha}$-variation (in the sense De la Vall$\acute{e}$ Poussin) on I forms a Banach space. In this space we define an operator of substitution H generated by a function $h:I{\times}\mathbb{R}{\rightarrow}\mathbb{R}$, and prove, in particular, that if H maps $BV^2_{\alpha}(I)$ into itself and is globally Lipschitz or uniformly continuous, then h is an affine function with respect to the second variable.

THE ANALYTIC FEYNMAN INTEGRAL OVER PATHS ON ABSTRACT WIENER SPACE

  • Yoo, Il
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.93-107
    • /
    • 1995
  • In their paper [2,3], Cameron and Storvick introduced some classes $S"+m$ and of functionals on classical Wiener spaces $C_0[a,b]$. For such functionals, they showed that the analytic Feynman integral exists and they gave some formulas for this integral. Moreover they obtained that the functionals of the form $$ (1.1) F(x) = exp {\int^b_a{\theta(s,x(x))dx} $$ are in S" where they assumbed that the potential $\delta : [a,b] \times R \to C$ satisfies (i) for each $s \in [a,b], \theta(s,\cdot)$ is the Fourier-Stieltjes transform of $\sigma_s \in M(R)$, (ii) for each Borel subset E of $[a,b] \times R, \sigma_s (E^{(s)})$ is a Borel measurable function of s on [a,b], and (iii) the total variation $\Vert \sigma_s \Vert$ of $\sigma_s$ is bounded as a function of s.tion of s.

  • PDF

GENERATING SETS OF STRICTLY ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON A FINITE SET

  • Ayik, Hayrullah;Bugay, Leyla
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1055-1062
    • /
    • 2014
  • Let $O_n$ and $PO_n$ denote the order-preserving transformation and the partial order-preserving transformation semigroups on the set $X_n=\{1,{\ldots},n\}$, respectively. Then the strictly partial order-preserving transformation semigroup $SPO_n$ on the set $X_n$, under its natural order, is defined by $SPO_n=PO_n{\setminus}O_n$. In this paper we find necessary and sufficient conditions for any subset of SPO(n, r) to be a (minimal) generating set of SPO(n, r) for $2{\leq}r{\leq}n-1$.

ON CONSTANT MEAN CURVATURE GRAPHS WITH CONVEX BOUNDARY

  • Park, Sung-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1235-1242
    • /
    • 2013
  • We give area and height estimates for cmc-graphs over a bounded planar $C^{2,{\alpha}}$ domain ${\Omega}{\subset}\mathbb{R}^3$. For a constant H satisfying $H^2{\mid}{\Omega}{\mid}{\leq}9{\pi}/16$, we show that the height $h$ of H-graphs over ${\Omega}$ with vanishing boundary satisfies ${\mid}h{\mid}$ < $(\tilde{r}/2{\pi})H{\mid}{\Omega}{\mid}$, where $\tilde{r}$ is the middle zero of $(x-1)(H^2{\mid}{\Omega}{\mid}(x+2)^2-9{\pi}(x-1))$. We use this height estimate to prove the following existence result for cmc H-graphs: for a constant H satisfying $H^2{\mid}{\Omega}{\mid}$ < $(\sqrt{297}-13){\pi}/8$, there exists an H-graph with vanishing boundary.

MULTIPLICITY OF SOLUTIONS FOR BIHARMONIC ELLIPTIC SYSTEMS INVOLVING CRITICAL NONLINEARITY

  • Lu, Dengfeng;Xiao, Jianhai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1693-1710
    • /
    • 2013
  • In this paper, we consider the biharmonic elliptic systems of the form $$\{{\Delta}^2u=F_u(u,v)+{\lambda}{\mid}u{\mid}^{q-2}u,\;x{\in}{\Omega},\\{\Delta}^2v=F_v(u,v)+{\delta}{\mid}v{\mid}^{q-2}v,\;x{\in}{\Omega},\\u=\frac{{\partial}u}{{\partial}n}=0,\; v=\frac{{\partial}v}{{\partial}n}=0,\;x{\in}{\partial}{\Omega},$$, where ${\Omega}{\subset}\mathbb{R}^N$ is a bounded domain with smooth boundary ${\partial}{\Omega}$, ${\Delta}^2$ is the biharmonic operator, $N{\geq}5$, $2{\leq}q$ < $2^*$, $2^*=\frac{2N}{N-4}$ denotes the critical Sobolev exponent, $F{\in}C^1(\mathbb{R}^2,\mathbb{R}^+)$ is homogeneous function of degree $2^*$. By using the variational methods and the Ljusternik-Schnirelmann theory, we obtain multiplicity result of nontrivial solutions under certain hypotheses on ${\lambda}$ and ${\delta}$.

ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Let $\mu$ be a finite positive Borel measure on the unit ball $B{\subset}\mathbb{C}^n$ and $\nu$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, $\sigma$ is the rotation-invariant measure on S such that ${\sigma}(S)=1$. Let $\mathcal{P}[f]$ be the invariant Poisson integral of f. We will show that there is a constant M > 0 such that $\int_B{\mid}{\mathcal{P}}[f](z){\mid}^{p}d{\mu}(z){\leq}M\;{\int}_B{\mid}{\mathcal{P}}[f](z)^pd{\nu}(z)$ for all $f{\in}L^p({\sigma})$ if and only if ${\parallel}{\mu}{\parallel_r}\;=\;sup_{z{\in}B}\;\frac{\mu(E(z,r))}{\nu(E(z,r))}\;<\;\infty$.

  • PDF

CLASSIFICATION OF BETTI DIAGRAMS OF VARIETIES OF ALMOST MINIMAL DEGREE

  • Lee, Wan-Seok;Park, Eui-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.1001-1015
    • /
    • 2011
  • In this article we study the problem to determine all occurring Betti diagrams of varieties $X{\subset}\mathbb{P}^r$ of almost minimal degree, i.e. deg(X) = codim(X; $\mathbb{P}^r$)+2. We describe a realistic picture of how many different kind of Betti diagrams exist at all (Theorem 3.1). By means of the computer algebra system "SINGULAR", we obtain a complete list of all occurring Betti diagrams in the cases where codim$(X,\mathbb{P}^r){\leq}8$.