• Title/Summary/Keyword: Sub-sampling ADC

Search Result 18, Processing Time 0.026 seconds

Compensation of Timing Offset and Frequency Offset in the Multi-Band Receiver with Sub-Sampling Method (Sub-Sampling 방식의 다중 대역 수신기에서 타이밍 오프셋과 주파수 오프셋 보상)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.501-509
    • /
    • 2011
  • Software defined radio(SDR) has a goal that places the analog-to-digital converter(ADC) as near the antenna as possible. But current technique actually can't do analog-to-digital converting about RF band signals. So one method is studying that samples RF band signals to IF band. One of the ways Sub-Sampling technique can convert signals from RF band to IF band without oscillator. If Sub-Sampling technique is used, over 2 bands can convert signals from RF band to IF band. But due to the filter performance in RF band, it is possible to generate interference between signals that is converted in low frequency band. The effect degrades performance. In this paper, we propose one method that uses time division multiplexing(TDM) method as a solution to avoid interference between signals. By doing TDM and Sub-Sampling at the same time that method can get signals without large changes of structures.

A 1.8V 50-MS/s 10-bit 0.18-um CMOS Pipelined ADC without SHA

  • Uh, Ji-Hun;Kim, Won-Myung;Kim, Sang-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.143-146
    • /
    • 2011
  • A 50-MS/s 10-bit pipelined ADC with 1.2Vpp differential input range is proposed in this paper. The designed pipelined ADC consists of eight stage of 1.5bit/stage, one stage of 2bit/stage, digital error correction block, bias & reference driver, and clock generator. 1.5bit/stage is consists of sub-ADC, DAC and gain stage, Specially, a sample-and hold amplifier (SHA) is removed in the designed pipelined ADC to reduce the hardware and power consumption. Also, the proposed bootstrapped switch improves the Linearity of the input analog switch and the dynamic performance of the total ADC. The reference voltage was driven by using the on-chip reference driver without external reference. The proposed pipelined ADC was designed by using a 0.18um 1-poly 5-metal CMOS process with 1.8V supply. The total area including the power decoupling capacitor and power consumption are $0.95mm^2$ and 60mW, respectively. Also, the simulation result shows the ENOB of 9.3-bit at the Nyquist sampling rate.

  • PDF

A High Swing Range, High Bandwidth CMOS PGA and ADC for IF QPSK Receiver Using 1.8V Supply

  • Lee, Woo-Yol;Lim, Jong-Chul;Park, Hee-Won;Hong, Kuk-Tae;Lee, Hyeong-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.276-281
    • /
    • 2005
  • This paper presents a low voltage operating IF QPSK receiver block which is consisted of programmable gain amplifier (PGA) and analog to digital converter. This PGA has 6 bit control and 250MHz bandwidth, $0{\sim}20\;dB$ gain range. Using the proposed PGA architecture (low distortion gain control switch block), we can process the continuous fully differential $0.2{\sim}2.5Vpp$ input/output range and 44MHz carrier with 2 MHz bandwidth signal at 1.8V supply voltage. Using the sub-sampling technique (input freq. is $44{\sim}46MHz$, sampling freq. is 25MHz), we can process the IF QPSK signal ($44{\sim}46MHz$) which is the output of the 6 bit PGA. We can get the SNDR 35dB, which is the result of PGA and ADC at full gain mode. We fabricated the PGA and ADC and the digital signal processing block of the IF QPSK with the 0.18um CMOS MIM process 1.8V Supply.

A 1V 10b 30MS/s CMOS ADC Using a Switched-RC Technique (스위치-RC 기법을 이용한 1V 10비트 30MS/s CMOS ADC)

  • Ahn, Gil-Cho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.61-70
    • /
    • 2009
  • A 10b 30MS/s pipelined ADC operating under 1V power supply is presented. It utilizes a switched-RC based input sampling circuit and a resistive loop to reset the feedback capacitor in the multiplying digital-to-analog converter (MDAC) for the low-voltage operation. Cascaded switched-RC branches are used to achieve accurate grain of the MDAC for the first stage and separate switched-RC circuits are used in the sub-ADC to suppress the switching noise coupling to the MDAC input The measured differential and integral non-linearities of the prototype ADC fabricated in a 0.13${\mu}m$, CMOS process are less than 0.54LSB and 1.75LSB, respectively. The prototype ADC achieves 54.1dB SNDR and 70.4dB SFDR with 1V supply and 30MHz sampling frequency while consuming 17mW power.

Differential Capacitor-Coupled Successive Approximation ADC (차동 커패시터 커플링을 이용한 연속근사 ADC)

  • Yang, Soo-Yeol;Mo, Hyun-Sun;Kim, Dae-Jeong
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This paper presents a design of the successive approximation ADC(SA-ADC) applicable to a midium-low speed analog-front end(AFE) for the maximum 15MS/s CCD image processing. SA-ADC is effective in applications ranging widely between low and mid data rates due to the large power scaling effect on the operating frequency variations in some other way of pipelined ADCs. The proposed design exhibits some distinctive features. The "differential capacitor-coupling scheme" segregates the input sampling behavior from the sub-DAC incorporating the differential input and the sub-DAC output, which prominently reduces the loading throughout the signal path. Determining the MSB(sign bit) from the held input data in advance of the data conversion period, a kind of the signed successive approximation, leads to the reduction of the sub-DAC hardware overhead by 1 bit and the conversion period by 1 cycle. Characterizing the proposed design in a 3.3 V $0.35-{\mu}m$ CMOS process by Spectre simulations verified its validity of the application to CCD analog front-ends.

UWB WBAN Receiver for Real Time Location System (위치 인식이 가능한 WBAN 용 UWB 수신기)

  • Ha, Jong Ok;Park, Myung Chul;Jung, Seung Hwan;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.98-104
    • /
    • 2013
  • This paper presents a WBAN UWB receiver circuit for RTLS(real time location system) and wireless data communication. The UWB receiver is designed to OOK modulation for energy detection. The UWB receiver is designed for sub-sampling techniques using 4bit ADC and DLL.The proposed UWB receiver is designed in $0.18{\mu}m$ CMOS and consumes 61mA with a 1.8V supply voltage. The UWB receiver achieves a sensitivity of -85.7 dBm, a RF front-end gain of 42.1 dB, a noise figure of 3.88 dB and maximum sensing range of 4 meter.

12-bit 10-MS/s CMOS Pipeline Analog-to-Digital Converter (12-비트 10-MS/s CMOS 파이프라인 아날로그-디지털 변환기)

  • Cho, Se-Hyeon;Jung, Ho-yong;Do, Won-Kyu;Lee, Han-Yeol;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.302-308
    • /
    • 2021
  • A 12-bit 10-MS/s pipeline analog-to-digital converter (ADC) is proposed for image processing applications. The proposed pipeline ADC consists of a sample and hold amplifier, three stages, a 3-bit flash analog-to-digital converter, and a digital error corrector. Each stage is operated by using a 4-bit flash ADC (FADC) and a multiplying digital-to-analog converter (MDAC). The proposed sample and hold amplifier increases the voltage gain using gain boosting for the ADC with high resolution. The proposed pipelined ADC is designed using a 180-nm CMOS process with a supply voltage of 1.8 and it has an effective number of bit (ENOB) of 10.52 bits at sampling rate of 10MS/s for a 1-Vpp differential sinusoidal analog input with frequency of 1 MHz. The measured ENOB is 10.12 bits when the frequency of the sinusoidal analog input signal is a Nyquist frequency of approximately 5 MHz.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

A 12-b Asynchronous SAR Type ADC for Bio Signal Detection

  • Lim, Shin-Il;Kim, Jin Woo;Yoon, Kwang-Sub;Lee, Sangmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper describes a low power asynchronous successive approximation register (SAR) type 12b analog-to-digital converter (ADC) for biomedical applications in a 0.35 ${\mu}m$ CMOS technology. The digital-to-analog converter (DAC) uses a capacitive split-arrays consisting of 6-b main array, an attenuation capacitor C and a 5-b sub array for low power consumption and small die area. Moreover, splitting the MSB capacitor into sub-capacitors and an asynchronous SAR reduce power consumption. The measurement results show that the proposed ADC achieved the SNDR of 68.32 dB, the SFDR of 79 dB, and the ENOB (effective number of bits) of 11.05 bits. The measured INL and DNL were 1.9LSB and 1.5LSB, respectively. The power consumption including all the digital circuits is 6.7 ${\mu}W$ at the sampling frequency of 100 KHz under 3.3 V supply voltage and the FoM (figure of merit) is 49 fJ/conversion-step.

A 1-8V 8-bit 300MSPS CMOS Analog to Digital Converter with high input frequence (네트워크 인터페이스를 위한 1-8V 8-bit 300MSPS 고속 CMOS ADC)

  • 주상훈;송민규
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.197-200
    • /
    • 2002
  • In this paper, presents a 1.8V 8-bit 300MSPS CMOS Subranging Analog to Digital Converter (ADC) with a novel reference multiplex is described. The proposed hか converter is composed of Sub A/D Converter block, MUX (Multiplexer) block and digital block. In order to obtain a high-speed operation, further, a novel dynamic latch, an encoder of novel algorithm and a MUX block are proposed. As a result, this A/D Converter is operated 100MHz input frequence by 300MHz sampling rate.

  • PDF