• 제목/요약/키워드: Sub-critical Pressure

검색결과 112건 처리시간 0.023초

신규 화력발전소의 성능 시험을 통한 터빈 효율의 평가에 관한 연구 (A Study on the Evaluation of Turbine Efficiency through the Performance Test of New Power Plant)

  • 권영수;정희택;정양범
    • 동력기계공학회지
    • /
    • 제5권1호
    • /
    • pp.11-20
    • /
    • 2001
  • Super-critical type steam power plant, which operates with steam pressure above the super-critical point, has a good reputation recently and is adopted as a new standard of the Korean Electric Power Corporation. The reason for the good reputation lies in it's superior power efficiency. However, the field data of the new power plant for the verification of it's performance are still insufficient, and more empirical data are needed to acquire technologies on the effective operation of it. In this study, the authors analyzed the field test data on power efficiencies got in a super-critical type steam power plant, and evaluated the excellency of the new plant by comparing the efficiency data with the one got in a conventional sub-critical type steam power plant.

  • PDF

원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발 (Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube)

  • 강덕지;김환열;배윤영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF

MBR공정의 플럭스 향상 기술에 관한 연구

  • 노성희;김선일
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.145-148
    • /
    • 2002
  • 막 생물반응기를 이용하여 일정한 TMP 와 일정한 플턱스 여과방식에 따른 실험을 수행한 결과, 일정한 TMP 에서보다 일정 한 투과 플럭스에서 여과하는 것이 여과의 초기 단계동안 과도한 오염을 피할 수 있으므로 바람직하다는 것을 확인하였다. 투과 플럭스를 고정시킨 실험에서 속도에 대한 임계 플럭스 증가 간격은 선형적이었으며, supra-critical zone 과 sub-critical zone 의 두 지대로 구분되었다. 막 생물반응기는 화학적 세정 없이 장 기간 운전되어야하므로 TMP를 고정시키는 깃보다 플럭스를 고정시켜 운전하는 것이 효과적이여, 최적운선조건은 sub-critical zone 경계층 위, 임계플렉스 바로 아래상태임을 알 수 있었다.

  • PDF

천연 냉매용 압력제어밸브의 유동특성 평가 (The Flow Characteristics of Pressure Control Valves for Natural Refrigerants)

  • 강효림;박형준;김가은;한승호
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.51-56
    • /
    • 2020
  • Research into natural refrigerants that use CO2, instead of chlorofluorocarbons and hydrofluorocarbons, has increased due to the environmental problems caused by ozone depletion. CO2 refrigerants are more environmentally friendly than conventional refrigerants because they have better latent heat of evaporation and heat transfer efficiency properties. However, they have very low critical temperatures and require high design pressures; therefore, pressure control valves, which reduce the pressure of the CO2 refrigerant to a safe level and apply it to the refrigerant air conditioning system, are necessary to secure stability against high pressure. In the present study, we evaluated the flow characteristics and valve performance of the pressure control valve using a CO2 refrigerant by measuring the pressure, velocity, and flow coefficient. In addition, we examined the applied forces caused by the internal pressure from the highly pressurized CO2 refrigerant and required thrust characteristics.

Correlation of internal and external pressures and net pressure factors for cladding design

  • Bodhinayake, Geeth G.;Ginger, John D.;Henderson, David J.
    • Wind and Structures
    • /
    • 제30권3호
    • /
    • pp.219-229
    • /
    • 2020
  • Net pressures on roofs and walls of buildings are dependent on the internal and external pressure fluctuations. The variation of internal and external pressures are influenced by the size and location of the openings. The correlation of external and internal pressure influences the net pressures acting on cladding on different parts of the roof and walls. The peak internal and peak external pressures do not occur simultaneously, therefore, a reduction can be applied to the peak internal and external pressures to obtain a peak net pressure for cladding design. A 1:200 scale wind tunnel model study was conducted to determine the correlations of external and internal pressures and effective reduction to net pressures (i.e., net pressure factors, FC) for roof and wall cladding. The results show that external and internal pressures on the windward roof and wall edges are well correlated. The largest ${\mathcal{C}}_{{\check{p},net}$, highest correlation coefficient and the highest FC are obtained for different wind directions within 90° ≤ θ ≤ 135°, where the large openings are on the windward wall. The study also gives net pressure factors FC for areas on the roof and wall cladding for nominally sealed buildings and the buildings with a large windward wall opening. These factors indicate that a 5% to 10% reduction to the action combination factor, KC specified in AS/NZS 1170.2(2011) is possible for some critical design scenarios.

부실식 정적연소실내 연소특성에 관한 연구 (II) 임계연락공의 형상변화에 따른 연소촉진효과 (Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-Chamber (II) Effect of Combustion Promotion with Configuration Change of the Critical Passagehole)

  • 김봉석;권철홍;류정인
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2611-2623
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we investigated the combustion characteristics in the main chamber using a constant volume combustion chamber with subchamber. The combustion characteristics with configuration change of the critical passageholes have been studied by taking pressure data, schlieren photograph, ion current and light emission signal of flame. Heat release rate with various critical passageholes also have been analysed by using the combustion model of a prechamber diesel engine. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the geometric configurations of critical passagehole.

화력발전소 보일러내의 열전달에 관한 연구 (A Study on the Heat Transfer in boiler through the performance test in thermal power plant)

  • 권영수;서정세
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2064-2069
    • /
    • 2004
  • The main reason to analyze heat transfer in boiler inside through the performance test in fossil power plant is to increase plant high efficiency and energy saving movement in the government. Tins study intends to have trend and analyze the boiler heat transfer through the performance test, so it may give us the heat distribution in boiler inside in super-critical and sub-critica1 pressure type power plant

  • PDF

An Overall Investigation of Break Simulators for LOCA Scenarios in Integral Effect Tests

  • Kim, Yeon-Sik;Park, Hyun-Sik
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.73-88
    • /
    • 2014
  • Various studies on the critical flow models for sub-cooled and/or saturated water were reviewed, especially on Fauske, Moody, and Henry for basic theoretical models; Zaloudek for insight into physical phenomena for a critical flow in an orifice type flow path; Sozzi & Sutherland for a critical flow test of saturated and sub-cooled water at high pressure for orifice and nozzles; and a Marviken test on a full-scale critical flow test. In addition, critical flow tests of sub-cooled water for the break simulators in integral effect test (IET) facilities were also investigated, and a hybrid concept using Moody's and Fauske's models was considered by the authors. In the comparison of the models for the selected test data, discussions of the effect of the diameters, predictions of the critical flow models, and design aspects of break simulator for SBLOCA scenarios in the IET facilities were presented. In the effect of diameter on the critical flow rate with respect to all dimensional scales, it was concluded that the effect of diameter was found irrespective of diameter sizes. In addition, the diameter effect on slip ratio affecting the critical flow rate was suggested. From a comparison of the critical flow models and selected test data, the Henry-Fauske model of the MARS-KS code was found to be the best model predicting the critical flow rate for the selected test data under study.

Transport properties of polycrystalline TaNx thin films prepared by DC reactive magnetron sputtering method

  • Hwang, Tae Jong;Jung, Soon-Gil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권2호
    • /
    • pp.1-5
    • /
    • 2021
  • We have investigated the electrical transport properties of polycrystalline tantalum nitride (TaNx) films. Various compositions of tantalum (nitride) thin films have been deposited on SiO2 substrates by reactive DC magnetron sputtering while changing the ratio of nitrogen partial pressure. The substrate temperature was maintained at 283 K during deposition. X-ray diffraction analyses indicated the presence of α-Ta and β-Ta phases in the Ta film deposited in pure argon atmosphere, while fcc-TaNx phases appeared in the sputtering gas mixture of argon and nitrogen. The N/Ta atomic ratio in the film increased ranging from 0.36 to 1.07 for nitrogen partial pressure from 7 to 20.7%. The superconducting transition temperatures of the TaNx thin films were measured to be greater than 3.86 K with a maximum of 5.34 K. The electrical resistivity of TaNx thin film was in the range of 177-577 𝜇Ωcm and increased with an increase in nitrogen content. The upper critical filed at zero temperature for a TaN0.87 thin film was estimated to exceed 11.3 T, while it showed the lowest Tc = 3.86 K among the measured superconducting TaNx thin films. We try to explain the behavior of the increase of the residual resistivity and the upper critical field for TaNx thin films with the nitrogen content by using the combined role of the intergrain Coulomb effect and disorder effect by grain boundaries.

초임계 탄화수소 항공유의 열역학적 물성치 예측 기법 연구 (Investigation on a Prediction Methodology of Thermodynamic Properties of Supercritical Hydrocarbon Aviation Fuels)

  • 황성록;이형주
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.171-181
    • /
    • 2021
  • This study presents a prediction methodology of thermodynamic properties by using RK-PR Equation of State in a wide range of temperature and pressure conditions including both sub-critical and super-critical regions, in order to obtain thermophysical properties for hydrocarbon aviation fuels and their products resulting from endothermic reactions. The density and the constant pressure specific heat are predicted in the temperature range from 300 to 1000 K and the pressure from 0.1 to 5.0 MPa, which includes all of the liquid and gas phases and the super-critical region of three representative hydrocarbon fuels, and then compared with those data obtained from the NIST database. Results show that the averaged relative deviations of both predicted density and constant pressure specific heat are below 5% in the specified temperature and pressure conditions, and the major sources of the errors are observed near the saturation line and the critical point of each fuel.