DOI QR코드

DOI QR Code

Transport properties of polycrystalline TaNx thin films prepared by DC reactive magnetron sputtering method

  • Hwang, Tae Jong (School of General Education, Yeungnam University) ;
  • Jung, Soon-Gil (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University)
  • Received : 2021.05.10
  • Accepted : 2021.05.25
  • Published : 2021.06.30

Abstract

We have investigated the electrical transport properties of polycrystalline tantalum nitride (TaNx) films. Various compositions of tantalum (nitride) thin films have been deposited on SiO2 substrates by reactive DC magnetron sputtering while changing the ratio of nitrogen partial pressure. The substrate temperature was maintained at 283 K during deposition. X-ray diffraction analyses indicated the presence of α-Ta and β-Ta phases in the Ta film deposited in pure argon atmosphere, while fcc-TaNx phases appeared in the sputtering gas mixture of argon and nitrogen. The N/Ta atomic ratio in the film increased ranging from 0.36 to 1.07 for nitrogen partial pressure from 7 to 20.7%. The superconducting transition temperatures of the TaNx thin films were measured to be greater than 3.86 K with a maximum of 5.34 K. The electrical resistivity of TaNx thin film was in the range of 177-577 𝜇Ωcm and increased with an increase in nitrogen content. The upper critical filed at zero temperature for a TaN0.87 thin film was estimated to exceed 11.3 T, while it showed the lowest Tc = 3.86 K among the measured superconducting TaNx thin films. We try to explain the behavior of the increase of the residual resistivity and the upper critical field for TaNx thin films with the nitrogen content by using the combined role of the intergrain Coulomb effect and disorder effect by grain boundaries.

Keywords

Acknowledgement

This work was supported by a National Research Foundation (NRF) of Korea grant funded by the Korean Ministry of Science, ICT and Planning (No. 2012R1A3A2048816).

References

  1. K. Il'in, M. Hofherr, D. Rall, M. Siegel, A. Semenov, A. Engel, K. Inderbitzin, A. Aeschbacher, and A. Schilling, "Ultra-thin TaN film for superconducting nanowire single-photon detectors," J. Low Temp. Phys., vol. 167, pp. 809-814, 2012. https://doi.org/10.1007/s10909-011-0424-3
  2. N. Arshi, J. Lu, Y. K. Joo, J. H. Yoon, and B. H. Koo. "Effects of nitrogen composition on the resistivity of reactively sputtered TaN thin films," Surf. Interface Anal., vol. 47, pp. 154-160, 2015. https://doi.org/10.1002/sia.5691
  3. T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, "Diffusion barrier property of TaN between Si and Cu," Appl. Surf. Sci., vol. 99, pp. 265-272, 1996. https://doi.org/10.1016/0169-4332(96)00464-3
  4. T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, and J. K. Kivilahti, "Reactive sputter deposition and properties of TaxN thin films," Microelectron. Eng., vol. 64, pp. 289-297, 2002. https://doi.org/10.1016/S0167-9317(02)00801-8
  5. C. S. Shin, D. Gall, Y. W. Kim, P. Desjardins, I. Petrov, J. E. Greene, M. Oden, and L. Hultma, "Epitaxial NaCl structure δ-TaNx(001): Electronic transport properties, elastic modulus, and hardness versus N/Ta ratio." J. Appl. Phys., vol. 90, pp. 2873-2885, 2001.
  6. N. Terao, "Structure of tantalum nitrides," Jpn. J. Appl. Phys., vol. 10, pp. 248-259, 1971. https://doi.org/10.1143/JJAP.10.248
  7. S. Chaudhuri, L. J. Maasilta, L. Chandernagor, M. Ging, and M. Lahtinen, "Fabrication of superconducting tantalum nitride thin films using infrared pulsed laser deposition," J. Vac. Sci. Technol., vol. 31, pp. 061502-061506, 2013. https://doi.org/10.1116/1.4812698
  8. K. Radhakrishnan , N. G. Ing, R. Gopalakrishnan, "Reactive sputter deposition and characterization of tantalum nitride thin films," Mater. Sci. Eng. B, vol. 57, pp. 224-227, 1999. https://doi.org/10.1016/S0921-5107(98)00417-6
  9. A. Tiwari, H. Wang, D. Kumar, and J. Naryan, "Weak-localization effect in single crystal TaN(001) films," Mod. Phys. Lett. B, vol. 16, pp. 1143-1149, 2002. https://doi.org/10.1142/S0217984902004688
  10. K. Lal, P. Ghosh, D. Biswas, A. K. Meikap, S. K. Chattopadhyay, S. K. Chatterjee, M. Ghosh, K. Baba, and R. Hatada, "A low temperature study of electron transport properties of tantalum nitride thin films prepared by ion beam assisted deposition," Solid State Commun., vol 131, pp. 479-484, 2004. https://doi.org/10.1016/j.ssc.2004.05.003
  11. M. Ocko, S. Zonja, G. L. Nelson, J. K. Freericks, L. Yu, and N. Newrman, "Low-temperature transport properties of TaxN thin films (0.72≤x≤0.83)," J. Phys. D: Appl. Phy., vol. 43, pp. 445405-445416, 2010. https://doi.org/10.1088/0022-3727/43/44/445405
  12. R. Sachser, F. Porrati, C. H. Schwalb, and M. Huth, "Universal conductance correction in a tunable strongly coupled nanogranular metal," Phys. Rev. Lett., vol. 107, pp. 206803-206807, 2011. https://doi.org/10.1103/PhysRevLett.107.206803
  13. Y. C. Sun, S. S. Yeh, and J. J. Lin, "Conductivity and tunneling density of states in granular Cr films," Phys. Rev. B, vol. 82, pp. 054203-054209, 2010. https://doi.org/10.1103/PhysRevB.82.054203
  14. R. Li, X. Z. Duan, X. Zhu, Y. Yang, D. B. Zhou, and Z. Q. Li, "Granular-composite-like electrical transport properties of polycrystalline cubic TaNx thin films prepared by rf sputtering method," Solid State Commun., vol. 279, pp. 34-38, 2018. https://doi.org/10.1016/j.ssc.2018.05.010
  15. N. P. Breznay, M. Tendulkar, L. Zhang, S. C. Lee, and A. Kapitulnik, "Superconductor to weak-insulator transitions in disordered tantalum nitride films," Phys. Rev. B, vol. 96, pp. 134522-134530, 2017. https://doi.org/10.1103/PhysRevB.96.134522
  16. A. A. Navid and A. M. Hodge, "Nanostructured alpha and beta tantalum formation-Relationship between plasma parameters and microstructure," Mater. Sci. Eng. A, vol. 536, pp. 49-56, 2012. https://doi.org/10.1016/j.msea.2011.12.017
  17. C. S. Shin, Y. W. Kim, D. Gall, J. E. Greene, and I. Petrov, " Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si(001) and MgO(001) by reactive magnetron sputter deposition." Thin Solid Films, vol. 402, pp. 172-182, 2002. https://doi.org/10.1016/S0040-6090(01)01618-2
  18. S. M. Kang, S. G. Yoon, S. J. Suh, and D. H. Yoon, "Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors," Thin Solid Films, vol. 516, pp. 3568-3571, 2008. https://doi.org/10.1016/j.tsf.2007.08.027
  19. J. J. Senkevich, T. Karabacak, D. L. Bae, and T. S. Cale, "Formation of body-centered-cubic tantalum via sputtering on low-κ dielectrics at low temperatures," J. Vac. Sci. Technol. B, vol. 24, pp. 534-538, 2006. https://doi.org/10.1116/1.2166860
  20. S. Bose, P. Raychaudhuri, R. Banerjee, P. Vasa, and P. Ayyub, "Mechanism of the size dependence of the superconducting transition of nanostructured Nb," Phys. Rev. Lett., vol. 95, pp. 147003-147006, 2005. https://doi.org/10.1103/PhysRevLett.95.147003
  21. K. B. Efetov and A. Tschersich, "Coulomb effects in granular materials at not very low temperatures," Phys. Rev. B, vol. 67, pp. 174205-174219, 2003. https://doi.org/10.1103/PhysRevB.67.174205
  22. V.L. Ginzburg and L.D. Landau., "On the theory of superconductivity," Zh. Eksp. Teor. Fiz. vol. 20, pp. 1064-1082, 1950.
  23. H. J. Niu and D. P. Hampshire, "Disordered nanocrystalline superconducting PbMo6S8 with a very large upper critical field," Phys. Rev. Lett., vol. 91, pp. 027002-027005, 2003. https://doi.org/10.1103/PhysRevLett.91.027002