• 제목/요약/키워드: Stress discontinuity

검색결과 109건 처리시간 0.022초

정자력 계산을 위한 적응 유한 요소법 (An Adaptive Finite Element Method for Magnetostatic Force Computations)

  • 박용규;박일한;정형석;정현교;이기식;한송엽
    • 대한전기학회논문지
    • /
    • 제38권2호
    • /
    • pp.100-105
    • /
    • 1989
  • This paper presents an adaptive finite element method for magnetostatic force computation using Maxwell's stress tensor. Mesh refinements are performed automatically by interelement magnetic field intensity discontinuity errors and element force errors. In initial mesh, the computed forces for different integration paths give great differences, but converge to a certain value as mesh division is performed by the adaptive scheme, We obtained good agreement between analytic solutions and numerical values in typical examples.

  • PDF

고평균하중을 고려한 구조응력 기반의 피로균열성장 모델에 관한 연구 (A Study on Fatigue Crack Growth Model Considering High Mean Loading Effects Based on Structural Stress)

  • 김종성;김철;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.220-225
    • /
    • 2004
  • The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inignorable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data.

  • PDF

잠금장치의 응력집중 저감에 관한 연구 (A Study on the Reduction of Stress Concentration for the Breech System)

  • 이영신;류충현;송근영;김인우;이규섭;차기업
    • 한국군사과학기술학회지
    • /
    • 제4권1호
    • /
    • pp.246-254
    • /
    • 2001
  • The breech system can be considered as a pressure vessel with an internal plug under high explosive pressure. The system consists of a breech block(internal plug) whose front surface subjects to pressure, and a breech ring(pressure vessel). There is the geometric discontinuity around roots of connection parts and then stress concentration is introduced due to pressure, where contact effect may be ignored because contact plane between two equipments is parallel ideally, Generally high stress concentration phenomena shorten the life cycle of the mechanical system. It is well known that shock load is much more harmful on safety of the system than static load. In this present paper, several geometric design variables which may affect stress condition on the system are chosen and the parametric study on the design variables is carried using commercial FEM codes. Finally, the obtained results in the single lug breech system are applied to design the 3 lugs breech system. The 3 lugs breech system can reduce the maximum stress level.

  • PDF

골조구조 해석과 판 요소 해석의 결합을 활용한 개구부 강도평가 시스템 개발 (Development of Strength Evaluation System Using the Combined Grillage and Shell Element for the Strength around the Opening)

  • 김성찬;이경석;송재영;김경수
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.605-611
    • /
    • 2007
  • A ship is composed of many grillage structures especially the deck which is consists of primary girders, transverse and longitudinal members. Several holes are arranged on these primary members for pipes, vents, etc. which cause stress concentration due to the discontinuity of the member. It is not easy to get the stress values around all these holes because of the huge amount of time necessary for computations. In this paper, a simple method to compute for the stress around the holes is suggested. This method is composed of two steps which are grillage analysis for primary members and detailed stress analysis using the results of the grillage analysis. This method is made for the design of the primary members with openings supporting the deck structure.

탄성균열해석을 위한 그리드 없는 유한차분법 (A Gridless Finite Difference Method for Elastic Crack Analysis)

  • 윤영철;김동조;이상호
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.321-327
    • /
    • 2007
  • 본 연구는 탄성균열문제를 신속하고 정확하게 해석할 수 있는 새로운 개념의 그리드(grid) 없는 유한차분법을 제시한다. 이동최소제곱법을 이용한 Taylor 전개식 구성을 통해 직접적인 미분계산 없이 근사함수와 그 미분을 손쉽게 계산한다. 그리드로 인한 절점 간의 종속성이 없어 해석영역 내의 불연속면 모델링이 용이하여 차분식 구성시 균열로 인한 불연속 효과를 고려하는 과정도 자연스럽다. 유한차분법에 근간을 두고 있어 지배 미분방정식을 직접 이산화하기 때문에 수치적분이 필요한 수치기법에 비해 계산속도도 빠르다. 모드 I과 모드 II 균열문제 해석을 통해 본 해석기법이 정확하고 효율적으로 응력확대계수를 계산할 수 있음을 보였다.

Meso-scale based parameter identification for 3D concrete plasticity model

  • Suljevic, Samir;Ibrahimbegovic, Adnan;Karavelic, Emir;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.55-78
    • /
    • 2022
  • The main aim of this paper is the identification of the model parameters for the constitutive model of concrete and concrete-like materials capable of representing full set of 3D failure mechanisms under various stress states. Identification procedure is performed taking into account multi-scale character of concrete as a structural material. In that sense, macro-scale model is used as a model on which the identification procedure is based, while multi-scale model which assume strong coupling between coarse and fine scale is used for numerical simulation of experimental results. Since concrete possess a few clearly distinguished phases in process of deformation until failure, macro-scale model contains practically all important ingredients to include both bulk dissipation and surface dissipation. On the other side, multi-scale model consisted of an assembly micro-scale elements perfectly fitted into macro-scale elements domain describes localized failure through the implementation of embedded strong discontinuity. This corresponds to surface dissipation in macro-scale model which is described by practically the same approach. Identification procedure is divided into three completely separate stages to utilize the fact that all material parameters of macro-scale model have clear physical interpretation. In this way, computational cost is significantly reduced as solving three simpler identification steps in a batch form is much more efficient than the dealing with the full-scale problem. Since complexity of identification procedure primarily depends on the choice of either experimental or numerical setup, several numerical examples capable of representing both homogeneous and heterogeneous stress state are performed to illustrate performance of the proposed methodology.

근사적인 해석법과 유한요소해석에 의한 터널붕괴하중 평가 (Assessment of Tunnel Collapse Load by Closed-Form Analytical Solution and Finite Element Analysis)

  • 이용주
    • 한국지반공학회논문집
    • /
    • 제23권4호
    • /
    • pp.185-197
    • /
    • 2007
  • 한계해석법인 상 하계법은 점착성, 점착성-마찰성, 마찰성분만 가지는 지반에서의 주로 얕은 터널에 대한 안정수를 구하기 위해 발전되어 왔다. 그러나 점성이 없고 마찰성분만 존재하는 지반에서의 비교적 깊은 터널에 대한 이러한 해석법의 연장은 현재까지 그 연구가 드물게 진행되어왔다. 따라서 본 연구는 이러한 상황에서의 터널붕괴하중을 구하기 위한 근사적인 해석법으로 응력불연속장에 근거하는 하계법과 동적 파괴메카니즘에 근거하는 상계법을 각각 제안하였다. 이러한 해석법에 의한 터널붕괴하중은 수치해석과 기존의 경계해석법과 비교되었으며 특히, 터널 수평축 상에 위치하는 유한지반요소들에 대한 유한요소해석 결과와 잘 일치됨을 보여 주었다.

New techniques for estimating the shut-in pressure in hydro-fracturing pressure-time curves

  • Choi Sung O.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.272-280
    • /
    • 2003
  • A definite shut-in pressure in hydraulic fracturing techniques is needed for obtaining the correct information on the in-situ stress regimes in rock masses. The relation between the behaviour of hydraulically induced fractures and the condition of remote stress is considered to be major reasons of an ambiguous shut-in pressure in hydraulic fracturing pressure-time history curves. This paper describes the results of a series of numerical analyses carried out using UDEC(Universal Distinct Element Code, Itasca), which is based on the discrete element method, to compare several methods for determining the shut-in pressure during hydraulic fracturing. The fully coupling of hydraulic and mechanical analysis was applied, and the effects of four different discontinuity geometries in numerical modelling have been investigated for this purpose. The effects of different remote stress regimes and different physical properties on hydraulic fracture propagation have been also analyzed. Several methods for obtaining shut-in pressure from the ambiguous shut-in curves have been applied to all the numerical models. The graphical intersection methods, such as (P vs. t) method, (P vs. log(t)) method, (log(P) vs. log(t)) method, give smaller values of the shut-in pressure than the statistical method, (dP/dt vs. P). Care should be taken in selecting a method for shut-in pressure, because there can be existed a stress anomaly around the wellbore and fracturing from the wellbore by a constant flow rate may have a more complicate mechanism.

  • PDF

Investigation on the propagation mechanism of explosion stress wave in underground mining

  • Wang, Jiachen;Liu, Fei;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.295-305
    • /
    • 2019
  • The bedding plane has a significant influence on the effect of blasting fragmentation and the overall performance of underground mining. This paper explores the effects of fragmentation of the bedding plane and different angles by using the numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include a dynamic compressive and tensile failure which is applied to simulate the fractures generated by the explosion. Firstly, the cracks propagation with the non-bedding plane in the coal with two boreholes detonated simultaneously is calculated and the particle velocity and maximum principal stress at different points from the borehole are also discussed. Secondly, different delay times between the two boreholes are calculated to explore its effects on the propagation of the fractures. The results indicate that the coal around the right borehole is broken more fully and the range of the cracks propagation expanded with the delay time increases. The peak particle velocity decreases first and then increases with the distance from the right borehole increasing. Thirdly, different angles between the bedding plane and the centerline of the two boreholes and the transmission coefficient of stress wave at a bedding plane are considered. The results indicated that with the angles increase, the number of the fractures decreases while the transmission coefficient increases.

Low-cycle fatigue evaluation for girth-welded pipes based on the structural strain method considering cyclic material behavior

  • Lee, Jin-Ho;Dong, Pingsha;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.868-880
    • /
    • 2020
  • One of the main concerns in the structural integrity of offshore pipelines is mechanical damage from external loads. Pipelines are exposed to fatigue failure in welded joints due to geometric discontinuity. In addition, fatigue loads such as currents, waves, and platform motions may cause significant plastic deformation and fracture or leakage within a relatively low-cycle regime. The 2007 ASME Div. 2 Code adopts the master S―N curve for the fatigue evaluation of welded joints based on the mesh-insensitive structural stress. An extension to the master S―N curve was introduced to evaluate the low-cycle fatigue strength. This structural strain method uses the tensile properties of the material. However, the monotonic tensile properties have limitations in describing the material behavior above the elastic range because most engineering materials exhibit hardening or softening behavior under cyclic loads. The goal of this study is to extend the cyclic stress-strain behavior to the structural strain method. To this end, structural strain-based procedure was established while considering the cyclic stress-strain behavior and compared to the structural strain method with monotonic tensile properties. Finally, the improved prediction method was validated using fatigue test data from full-scale girth-welded pipes.