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Assessment of Tunnel Collapse Load by Closed-Form AnalyﬁcaL
Solution and Finite Element Analysis
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Abstract

Limit analysis of upper and lower bound solutions has been well developed to provide the stability numbers for shallow
tunnels in cohesive soil (¢, material), cohesive-frictional soil (¢’ - ¢" material) and cohesionless soil (¢’ material).
However, an extension of these methods to relatively deep circular tunnels in the cohesionless soil has been explored
rarely to date. For this reason, the closed-form analytical solutions including lower bound solution based on the stress
discontinuity concept and upper bound solution based on the kinematically admissible failure mechanism were proposed
for assessing tunnel collapse load in this study. Consequently, the tunnel collapse load from those solutions was compared
with both the finite element analysis and the previous analytical bound solutions and shown to be in good agreement

with the FE results, in particular with the FE soil elements located on the horizontal tunnel axis.

Keywords : Closed-form analytical solution, Cohesionless soil, Failure mechanism, Finite element analysis, Limit

analysis, Stress discontinuity, Tunnel collapse load

1. Introduction Taylor, 1997). As far as upper and lower bound solutions
for the tunnel stability in the drained conditions are

The issue of whether undrained or drained conditions concerned, relatively few applications are known. In
are more appropriate to the tunnel stability problem contrast, finite element analysis (FEA) assuming the soil
depends principally on the permeability of the soil, the behavior as an elastic-plastic constitutive relationship has
excavation rate, and the size of the tunnel (Mair and been applied to problems in this area to date. The FEA
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can provide the overall collapse mechanisms associated
with the formation of narrow shear bands, although
finding tunnel collapse loads for the critical soil elements
around the tunnel is a difficult task for the displacement
controlled tunnel system rather than for the load
controlled tunnel system (Lee, 2004).

Stability of a circular plane strain tunnel for this study
can be considered in terms of the idealized geometry
shown in Fig. 1. For this study, the relatively deep circular
plane strain tunnel (C/D = 3.7, Zy=420 mm) in comparison
with the author’s shallow model tunnel (C/D=2.2, Zy=270
mmy) without any ground surcharge pressure (g; = 0) was

proposed to calculate tunnel collapse load (Lee, 2004).

Plane strain
Cohesion = ¢’

Friction angle = ¢'
C Unit welght =y

Zo

Unlined tunnel

>l

Fig. 1. Geometry of an unlined circular plane strain tunnel (C:
tunnel embedded depth from tunnel crown to surface, D:
tunnel diameter, os: surface surcharge load, or: tunnel
internal pressure, Zy: tunnel embedded depth from tunnel
centre to surface)

In addition, lower bound solution based on the stress
discontinuity concept and upper bound approach based
on the kinematically admissible failure mechanisms were
proposed and compared with the numerical results by the
finite element analysis (FEA) associated with the feed-back
data from the laboratory model tunnel test. These bound
solutions are also compared with the previous analytical
upper and lower bound solutions by Atkinson and Potts
(1977) and lower bound solution only by Miihlhaus
(1985).

2. Review of Bound Solutions in Drained
Conditions

Applications of the limit analysis method for the tunnel
stability in the drained conditions are shown in Table 1.
Each of these applications is well described by Lyamin
and Sloan (2000). Among those applications, bound
solutions for a shallow tunnel (C/D < 2.5) by Atkinson
and Potts (1977) are particularly considered in this study due
to the same soil condition (i.e. ¢’ = 0) and independence
of the tunnel depth parameter (C/D) as well as the
magnitude of any ground surface pressure (). Atkinson
and Potts (1977) derived a lower bound solution (or safe
tunnel pressure) based on the possible states of stress in
the soil around a shallow tunnel and a upper bound
solution (or unsafe tunnel pressure) based on the collapse
mechanism, as shown in Figs. 2 (a) and (b) respectively.

The lower bound equation is given by

Table 1. Summary of Limit Analysis for the Tunnel Stability problem in Drained Conditions

References Limit analysis Soil conditions Tunnel geometry Tunnel depths (C/D)
Atk'mson and Lower bound solution c'—¢ . (Mohr—Coulomb) | Circular plane strain oD <25
Cairncross (1973) material tunnel
Atkinson and Potts Uppgr and lower bound 4" material (¢’ =0) Circular plane strain CD<25
(1977) solutions tunnel

Circular plane strain
Mihihaus (1985) Lower bound solutions c—¢ ) (Mohr=Coulomb) | tunnel and 3D o C/b <35
material unsupported cylindrical
tunnel heading
; i _ Longitudinal
Leca and Dormieux Uppgr and lower bound | ¢'—¢ . (Mohr—Coulomb) unsupported tunnel C/D <92
(1990) solutions material .
heading
. Finite element upper L _ . .
Lyamin and Sloan and lower bound c'=¢’ (Mohr—Coulomb) | Circular plane strain cb<5
(2000) solutions material tunnel
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(a) lower bound stress field

b4

v : Angle of dilation

(b) upper bound mechanism

Fig. 2. Bound solutions after Atkinson and Potts, 1977 (A = tunnel radius, Z, = depth to tunnel, o/ radial stress around tunnel, o4

tangential stress around tunnel)
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_ l+sing’
where ““1—sing’ and ¢ are the maximum angle of

shearing resistance. The upper bound equation is also

given by

o 1 1 +¢,_£
23R 4cosg’| tang’ 2 )

It should be noted that the rate of work dissipated in
a perfectly plastic frictional material with an associated
flow rule (¢ = #") is zero and the upper bound, or unsafe,
collapse pressure given by Eq. (2) is independent of the
tunnel depth (C or Zy) and the magnitude of any ground
surface pressure (o). For a cohesive-frictional (¢’ - ¢’
Mohr-Coulomb) material, Mithlhaus (1985) derived analytical
lower bound solutions for a circular plane strain tunnel
as well as the three-dimensional problem of an unsupported
cylindrical tunnel heading. These solutions are valid for
both drained and undrained loading conditions and will
be compared with the author’s lower bound solution in
a later section of this paper.

Recently, Leca and Dormieux (1990) have adopted the

limit analysis to provide failure pressures of a shallow

unsupported circular tunnel heading in a cohesive-frictional
material. They compared their analysis with centrifuge tests
and concluded that the upper bound solutions (based on
the conical blocks and kinematic conditions) are closer
to the actual pressures at failure than the lower bound
values, and can assess reasonable estimates of critical
face pressures. However, there is a difficulty in deriving
precise bounds by hand in three-dimensions (Lyamin and
Sloan, 2000). Lyamin and Sloan (2000) have performed
the upper and lower bound finite element solutions based
on nonlinear programming to assess the stability of a plane
strain circular tunnel in a cohesive-frictional material.
They showed the deformation patterns and plastic zones
for a deep tunnel (C/D=135), which are similar to the
authors’ FE and the physical model tunnel test data, and
also proposed an upper bound rigid block mechanism
based on the velocity field at collapse for a material
whose friction angle is greater than about 40°. This
mechanism is identical to Atkinson and Potts (1977) for
the shallow tunnel (C/D < 2.5).

Apart from the upper bound mechanisms proposed by
Atkinson and Potts (1977); Lyamin and Sloan (2000)
present the kinematically admissible upper bound mecha-
nisms associated with the maximum shear strain pattern

at collapse, which is based on the FEA rather than model
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Table 2. Assumed Material Parameters (based on Gibson’s soil) for FEA

c y ¢’ ¥ Eo me me Yy
(kPa) ¢) ) (kPa) (kPa/m) (kPa/m) (KN/m®)
0.1 0.35 23 15 1,600 10,000 0 24

Note: ¢ = cohesion, v = Poisson’s ratio, ¢’ =angle of shearing resistance, = angle of dilation, £,= Young’s modulus at ground
surface, mg, m,= gradients of Young’s modulus and cohesion with depth, ~" = soil unit weight

tunnel test.

3. Finite Element Analysis of Model Tunnel
Test under Plane~Strain Conditions

Since finite element analysis (FEA) can provide infor-
mation on all design requirements, the author adopted
this method to solve the plane-strain tunnel boundary
value problem. The soil behaviour is assumed to be
governed by an elastic and perfectly plastic constitutive
relation based on the Mohr-Coulomb criterion with a
non-associated flow rule, which is incorporated in the
CRISP. More details about boundary conditions and
tunnelling simulation etc. were explained in Lee (2004).
Table 2 summarizes the material parameters derived from
the early FE parametric study for pile loading test rather
than later shear box test. For this reason, the friction
angle (¢'=23°) and soil unit weight (v =24 kN/m’)
were different from the proposed closed-analytical solution
parameters based on the shear box test (¢’ =26° and ~
=20 kN/m’). In the FE work, Ky (=0.66) was applied

to the initial in-situ stress conditions.

3.1 Investigation of Stress Paths around FE Tunnel

The model tunnel test was carried out on a truly
two-dimensional granular material with no elastic or plastic
strains in the transverse direction. Ky line defined as the
ultimate critical state is reached at #/s" = sing’ . = tanc.’
where s =mean effective stress [=(0)+ 03)2], t=
radius of Mohr’s circle of stress [=(¢' - ¢3)/2]. This line
is inclined at angle o’ to the normal effective stress axis.
The relationship between ¢ and s of individual elements
during the loading or unloading process provides an
interesting insight into the local soil behavior. A second

important #/s’ ratio is the start condition which, in this

ro
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case, was always an earth pressure at rest (Ky condition).

This is termed the K; line:

K, =tang =l - U=Ko)
- s (1+Ky) 3)

Fig. 3. Locations of soil elements C, S and | around FE tunnel

(Zo = 420 mm)
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Fig. 4. Stress paths around FE tunnel



where ¢ ko= angle of shearing resistance in K, condition,
Ky=( - sing")=0.66, the value of K, =0.20.
Locations of three typical soil elements are shown in
Fig. 3. Element C represents soil above the tunnel crown,
S to the side of the tunnel (springing) and I below the
tunnel (invert) respectively. Fig. 4 shows stress paths for
C, S and I soil elements during volume loss developed.
The mean normal stress for all elements falls sharply
towards the Ky line up to a volume loss of 10.94%, while
a marginal increase in shear stress occurs in elements S

and I and a small decrease in shear stress occurs at the

crown. After 10.94% volume loss, all elements climb
slightly along the K line. The stress paths are clearly
consistent with the tunnel operations (i.e. reducing tunnel
diameter), probably reaching a plastic failure condition

between 5.83% and 10.94% volume loss.

3.2 Investigation of Strain Data

Assuming the numerical work that directions of major
principal stress (0;) and major principal strain (&)

coincide for plastic behavior, data from numerical work

g1 directions : - -> "f -~ -

(@) FE tunnel

(b) model! tunnel

Fig. 5. Comparison of ¢ (= &/} directions at V.= 15.21%

Zero extension directions

/ ! &
MY PRI NNy,

(a) FE tunnel

(b) model tunnel

Fig. 6. Comparison of zero extension (slip line) directions at V. = 75.21%:
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Ground surface

Max. Shear Strain

(a) FEA

Model Test No data

M=15' zone
Ly

(b) model test

Fig. 7. Comparison of maximum shear strain contour at V. = 75.2/%

can be compared with the strain data from the physical
model tunnel test. & (= &) and zero extensions or slip
lines o (positive) and 3 (negative) direction data (based
on the Mohr’s circle of strain) developed at V7= 15.21%
are shown in Figs. 5 and 6 respectively. It should be
noted that zero extension data from the FEA only present
a slip line directions due to the limitation of CRISP
program. Surprisingly the pattern of FE data shows fair
agreement with the model data. In particular, the tangential
orientation of & (= ¢';) directions around the tunnel is
identical to model tunnel tests by Atkinson et al. (1977).
The author has sketched on the model data some of the
best fit trajectories to highlight the similarities. Strain data
is notoriously difficult to obtain from small measured
differences in physical models. Only the shear strain data
is presented in the form of contour plots (Fig. 7). In
general, the data from the model suggests the beginning
of “horn like” patterns with contours of maximum shear
strain, comparable in magnitude and shape, but nothing

like which is as dramatic as the FE data.

4, Upper and Lower Bound Solutions

The basic concepts for carrying out upper and lower
bound approaches are contained in many undergraduate

and postgraduate texts. They are well presented by
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Atkinson (1981). In this study, the author uses the
deformation patterns, the shear strain contours and the
principal strain (or stress) directions from the physical
model test and FE data to assist in their choice of stress
fields for lower bound solution and for possible kine-
matically admissible mechanisms with which to develop
the upper bound solutions. In order to be able to draw
acceptable stress fields based on straight lines rather than
the logarithmic spiral, the author chooses the stress cha-
racteristic lines (based on the slip line directions « and
B) that are associated with a &y (angle change of o
direction) of 15° and a ¢  of 26° These are able to
provide simple whole angles when using §#/2 and /2.
The mobilized friction angle (©) and the angles of ¢
direction (&8s and &g) are calculated, giving the values

of o, 64 and G and the stress ratio change (s /s 4):

sin p' =sing’cosJ, @)
_ (4504 Py %6

QB&A_(45 +2)— 2 (5)

S;; 248tan ¢’

- = exp

s (6)

where 55 = high stress zone B, 54 = low stress zone A,
bp=rotation of principal stress directions [=Ad], G,=

angle of principal stress direction in zone A, &= angle



Table 3. Fundamental Parameters for the Limit Analysis (based on shear box test)

’

¢ p O Bs ;i g5 Y
) ) ) ) Sdlsa ) (kN/m)
26 25 50 65 1.3 26 20

of principal stress direction in zone B, o =angle of
mobilized friction.

Table 3 shows the fundamental parameters used in the
limit analysis for the upper and lower bound solutions.
It should be noted that the experimental value of v (20
kN/m’) is less than the FE value (24 kN/m’). Because the
value of g¢ adopted in the FEA was estimated prior to
any experimental work. It was assumed that the “area
ratio” of rods was much less than the “void ratio”
concept of granular material. The packing was assumed
to be dense and on the basis of information from
Yamamoto and Kusuda (2001). It was assessed that a
value greater than 22 kN/m’ would be appropriate for the
numerical work.

Bound calculations are relevant to homogeneous, isotropic
materials as plastic failure is developed. Lower bounds
are assumed on equilibrium across “stress discontinuities”
and the Mohr’s circle of stress is used to determine the
stress changes. Upper bounds incorporate a complete
kinematically admissible rupture mechanism. The best
answers are obtained when the collapse mechanisms and

the stress discontinuity pattern are common.

4.1 Lower Bound (LB) Solution

Fig. 8 shows the two stress discontinuities ¢ and 3
for a material with ¢ = 26° and &= 15°. Mohr’s circles
of stress for typical zones A and B are shown in Fig.
9. The two discontinuity lines o and 3 together with the
major principal stress directions are shown. The resulting
circumferential arrangement of ¢; directions was as
observed in both the model tunnel test and the FEA data.

To assess a lower bound solution for a tunnel at a
specific depth (Zp =420 mm) involves a uniform stress
distribution around the whole tunnel and produces the
“tear drop” type diagram between the ground surface at
m and the tunnel, as shown in Fig. 10. The diagram is

Assessment of Tunnel Collapse Load by Closed-Form Analytical Solution and Finite Element Analysis

for a weightless material with a surcharge at m. Self
weight soil would deform this pattern. However, two
approximate answers can be obtained as follows: (a) the
tear drop is assumed to be bound to the fully mobilized
plastic zone; (b) At the level of the centre line of the
tunnel point v in the elastic zone, the principal stress
direction is vertical and is assumed to be the self weight.
Area V is assumed to be at the limiting active state:

(0}), =K (o), 7

_ (1-sing")

where ~ ' (1+sing') and ¢, &5 = major and minor

principal effective stresses, therefore

L @) KD (e
(1-sing’) (1-sing’) (1+sing’)

®)

Between zone V and zone R adjacent to the tunnel
there are 8 stress discontinuities finishing at the same
physical level. Therefore, the value of Py (= o) at the
tunnel centre level will be

€)

Element in stress condition
8y (Fig. 9)

£, direction

Fig. 8. Postulated stress discontinuities associated with ¢ = 26°
and Sp=15°
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P=26deg.

~p'=13deg.
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Fig. 9. Mohr circles with o and g discontinuities for zone A

m Zo=420mm

+ Ground level
o' =(0')w=0.95kPg
~ e

s'Mis'k=(1 ,3)2
(c"3m=(6"3)x - (1 .3»)2

Fig. 10. Lower bound stress field for 2= 420 mm tunnel

A similar exercise has been carried out down the
vertical axis from M to A by a simple “two step method”
adjusting the s” value for each double step. This yielded
a value of 1.56 kPa (= (05)4). It is believed that the
horizontal assessment is the more relevant value as the
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+ LB Calculation
in-site (FEA)

E VL=5.83% (FEA)
100
h © VL=10.94% (FEA)
© VL=158.21% (FEA)

Depth (mm)

Fig. 11. Comparison of o’z above tunnel crown (along tunnel
centre line)

distorted form of stress discontinuities would be less
influential across the horizontal axis. Also, the failing
zones developed in this area rather than at the crown.

As an interesting check, the author investigates the o'
stress distribution down the vertical centre line of the

tunnel with the FE data, as shown in Fig. 11. The pattern



of stress distribution from the LB calculation is in
agreement with the FE data for large volume losses Vi =
10.94% and 15.21%, but clearly diverges to some 1.1 kPa
higher below 150 mm. The FEA could not provide data
below 330 mm due to the influence of the bar elements
but a value of about 0.7 to 0.8 kPa would appear to be

probable. A similar discrepancy and stress distribution

Z0=420mm Ground Jevel

TM-01

down the tunnel axis are observed between the LB
calculation for 230 mm depth and 250 mm for the FEA.

4.2 Upper Bound (UB) Approach

Based on the “tear drop” stress discontinuity field adopted

for the lower bound, the author examined many possible

Zo=420nmum Groundlevsl

Fig. 12. Upper bound mechanism, TM-01

T\ Z0=420mm Ground level

TM-02

l

i Zo=420nun Ground leve]

Y

Fig. 13. Upper bound mechanism, TM-02
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mechanisms. Three of the possible kinematically admissible
failure mechanisms (viz. TM-01; TM-02; and TM-03) are
shown in Figs. 12, 13 and 14. The key differences are
the orientation of the initial block B (i.e. 10° below
horizontal; horizontal; and 23° above horizontal) and the
active subsidiary blocks X and Y which enter the “clastic
zone”. The displacement vectors on rupture surfaces are
shown as a short solid line. The corresponding displacement

1;\ Zo=420mm

Ground lewvel

TM-03

diagrams for these upper bound mechanisms are shown
in Fig. 15. The radial movements of the segments adjacent
to the tunnel are assessed and a uniform pressure P, (or
or) is assumed to act radially over the whole tunnel
surface. The work done against the Py stress is equated
to the self weight work contribution (based on full

association, ¢’ = , no work is dissipated within the soil).

H Z0=420mm Ground level

Fig. 14. Upper bound mechanism, TM-03

y
y 5 ¥
«ff° < Saas o sfo
| S |mm)
e‘j_ e
TM-01 TM-02 TM-03

Fig. 15. Corresponding displacement diagrams for TM-01, 02 and 03
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5. Results

The values of Py from the lower and upper bound
solutions are summarized in Table 4. The upper bound
solutions for mechanisms TM-01 and TM-02 are surpri-
singly close to the lower bound solution for the tunnel
centre line level. It is believed this was achieved because
of the large radial movements resulting from the dis-
placement of segment B dominating the work component.
This segment incorporates the zone at and below the
tunnel centre line.

Fig. 16 shows the location of FE elements C*, P*, R*
and S* around the FE tunnel. In Fig. 17 the minor
principal stress (0';) for each FE element is plotted
against volume loss (V). For comparison, the lower
bound solutions in two crown locations are also shown.
The stresses all appear to decay towards an asymptotic
value as volume loss increases, stabilizing at between
1.45 and 1.65 kPa. It should be noted that the elements

Table 4. Py Values from LB and UB Approaches

chosen are not right against the tunnel surface, but
somewhat inside this line. This was because the presence
of the “bar elements” in the FEA caused major fluctua-
tions in the ¢'; values at the various integration points
in the crown elements close to the tunnel surface. The
lower bound solution for A is in surprisingly good
agreement with the FE data for the crown elements C*
(on the centre line) and P* (on the 45° line). In addition,
the lower bound solution by Miihlhaus (1985) is close
to the LB at A, while an analytical LB solution by
Atkinson and Potts (1977) is remote from those LB
solutions. The remote LB value is probably due to their
assumption of admissible stress boundary conditions — if
the critical location is at tunnel crown B in Fig. 2 (a)
for Zy=R=D/2 (i.e. tunnel crown level is located at
ground surface, C=0), the tunnel pressure (or) can
become a major principal stress (o) rather than a minor
principal stress (¢') in this study, i.e. gz =0;= or and

Oeg= 0 3= ofu. For this reason, their LB solution is

dy2=50mm

LB
uB
Crown area Centre level
C A S R TM-01 T™—02 TM—-03
2.05kPa 1.56kPa 0.7kPa 0.41kPa 0.48kPa 0.50kPa 6.31kPa
i
\
Py
Zg'—’dw _// o
R=D2= Py ‘
<

o
ERNTATL

-

Fig. 16. Soil elements C’,

Assessment of Tunnel Collapse Load by
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P*, R" and S" around FE tunnel
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more appropriate for shallow tunnels rather than deep
tunnels (C/D > 2.5). However, the LB solution by Atkinson
and Potts (1977) indicates critical tunnel pressure in
terms of safety, i.e. safe tunnel pressures must lie on or
above the LB solution.

Fig. 18 shows the two lower bound values for the
horizontal locations R and S and the UB value for TM-01
together with the FE data for R* and S*. In contrast to
the FE soil elements adjacent to the tunnel crown surface,
the FE element R* (on the horizontal tunnel axis) appears

to be very close to the lower bound solution for the

25 ?
g +\
LBatC "~
2.0 (this study) S
x So ™ S~ ~
J Tl Rt B
1 LBat A T~ T e —em— e — - L
15 4  (hisstudy) B TN =X
-~ LB by Muhthaus (1985) -
=
e}
=
]
R,
1.0
% LB by Atkinson and Potes (1977)~ I_' B
§ ~C (LB)
A (LB)
05 1 FE data a
o+ Crown Element, C* (0.4do above crown level)
x Crown Element, P* (on 45 deg. line)
Note: Po is minor principal stress (6'3)
0.0 u T T T —T T T T 1
4 6 8 10 12 14 16
VL (%)

Fig. 17. LB solutions for A and C with FE data (0;= 0, 4’ = 26°)

25 9

\ FE data
S, A SideElement, R* 2rum-from tunne] side wall)

A 8l Side Element.S* (23 Amm from tunoel side wally
A
)

\
1 \ R (LB)
] \\\ \ Tunpel horizontal axjs
\
15 \ s ws)

_ Block "B"

= >
i \\\\ oo in TM-01
g
1.0 ~
] __LA_."’."."__!"__('_”@_? n .
g6 LB #t S (this study) ! \\\_“"*.
L3
05 UB by Atkinwn and Potts (1977 ; o
5 UB (TM-
A- — mnknlﬂ)snndy)
L8 by Atkinsom and Pows (D97~ == =~ AT
1 gm0t I By bbems Pty = — =~ =— * — - — —1‘ -
B8y Athrson und Potes (1977)
0.0 LA T T T AN B 1
4 6 8 10 12 14 16
VL (%)
Fig. 18. UB solution for TM~01 and LB solutions for R and S
with FE data
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location of R. The FE element S* shows a rapid stress
degradation as volume loss develops, approaching an
asymptotic value close to the lower bound solution for
the location of S. Surprisingly the UB value from Atkinson
and Potts (1977) for ¢’ =26° is very close to the author’s
result for TM-01. Their kinematically admissible upper
bound mechanism shown in Fig. 2 (b) seems to work for
the deep tunnel. However, it is obvious that Atkinson and
Potts’s (1977) LB and UB solutions for the tunnel pressure
are mainly dependent of soil strength parameter (¢’) and
unit weight of soil (') rather than tunnel geometry
parameter (C/D). Therefore, their bound solutions could
strictly be limited to the shallow tunnels. Nonetheless, for
a high frictional material (¢’ = 50°), the LB solution by
Atkinson and Potts (1977) is in good agreement with
Miihlhaus (1985) considering the funnel geometry parameter
(C/D) additionally in his LB solution (Fig. 19). From the
above point of view, the soil strength parameter (f¢)
particularly around the tunnel plays a key role in the deep
tunnel pressure for Atkinson and Potts (1977).

The author believes that the stresses in the FE elements
chosen adjacent to the tunnel side wall are much less
influenced by the “bar elements” than those on the
crown. The tunnel sides are almost a classic “active

retaining wall” situation.

6. Conclusions

Failure mechanisms (based on the “tear-drop” stress
discontinuity field) of a relatively deep circular plane-
strain tunnel in a cohesionless-frictional material have
been proposed using the finite element analysis (FEA)
and the physical model tunnel test. The tunnel collapse
pressures assessed by the upper and lower bound approaches
in this paper were shown to be in good agreement with
the FE results, in particular the FE soil elements located
on the horizontal tunnel axis. However, the lower bound
assessment proved quite difficult between the ground
surface and the tunnel crown (i.e. along the vertical axis
of the tunnel), where the soil self-weight influence was

only approximately allowed for.
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