DOI QR코드

DOI QR Code

Assessment of Tunnel Collapse Load by Closed-Form Analytical Solution and Finite Element Analysis

근사적인 해석법과 유한요소해석에 의한 터널붕괴하중 평가

  • Lee, Yong-Joo (Research Institute of Industrial Science & Technology (RIST))
  • Published : 2007.04.30

Abstract

Limit analysis of upper and lower bound solutions has been well developed to provide the stability numbers for shallow tunnels in cohesive soil ($c_u$ material), cohesive-frictional soil (c'-$\phi$' material) and cohesionless soil ($\phi$'material). However, an extension of these methods to relatively deep circular tunnels in the cohesionless soil has been explored rarely to date. For this reason, the closed-form analytical solutions including lower bound solution based on the stress discontinuity concept and upper bound solution based on the kinematically admissible failure mechanism were proposed for assessing tunnel collapse load in this study. Consequently, the tunnel collapse load from those solutions was compared with both the finite element analysis and the previous analytical bound solutions and shown to be in good agreement with the FE results, in particular with the FE soil elements located on the horizontal tunnel axis.

한계해석법인 상 하계법은 점착성, 점착성-마찰성, 마찰성분만 가지는 지반에서의 주로 얕은 터널에 대한 안정수를 구하기 위해 발전되어 왔다. 그러나 점성이 없고 마찰성분만 존재하는 지반에서의 비교적 깊은 터널에 대한 이러한 해석법의 연장은 현재까지 그 연구가 드물게 진행되어왔다. 따라서 본 연구는 이러한 상황에서의 터널붕괴하중을 구하기 위한 근사적인 해석법으로 응력불연속장에 근거하는 하계법과 동적 파괴메카니즘에 근거하는 상계법을 각각 제안하였다. 이러한 해석법에 의한 터널붕괴하중은 수치해석과 기존의 경계해석법과 비교되었으며 특히, 터널 수평축 상에 위치하는 유한지반요소들에 대한 유한요소해석 결과와 잘 일치됨을 보여 주었다.

Keywords

References

  1. Atkinson, J. H. (1981), 'Foundations and slopes', McGraw-Hill, UK
  2. Atkinson, J. H. and Caimcross, A. M. (1973), 'Collapse of a shallow tunnel in a Mohr-Coulomb material', Proc. Symp. Role of plasticity in soil mechanics, Cambridge, 202-206
  3. Atkinson, J. H. and Potts, D. M. (1977), 'Stability of a shallow circular tunnel in cohesionless soil', Geotechnique, 27, 203-215 https://doi.org/10.1680/geot.1977.27.2.203
  4. Atkinson, J. H., Brown, E. T., and Potts, D. M. (1977), 'Ground movements near shallow model tunnels in sand', Proc. Conf of Large ground movements and structures, J. D. Geddes (ed.), The University of Wales Institute of Science and Technology, Cardiff, July 1977, 372-386
  5. Leca, E., and Dormieux, L. (1990), 'Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material', Geotechnique, 40, 581-606 https://doi.org/10.1680/geot.1990.40.4.581
  6. Mair, R. J., and Taylor, R. N. (1997), 'Theme lecture: Bored tunneling in the urban environment', Proc., 14th Int. Conf. Soil Mech. Found Engrg., Vol.4, 2353-2385
  7. Muhlhaus, H.-B. (1985), 'Lower bound solutions for tunnels in two and three dimensions', Rock Mech. Rock Eng., 18, 37-52 https://doi.org/10.1007/BF01020414
  8. Lee, Y. J. (2004), 'Tunnelling adjacent to a row of loaded piles', PhD thesis, University College London, University of London, UK
  9. Lyamin, A. V. and Sloan, S. W. (2000), 'Stability of a plane circular tunnel in a cohesive-frictional soil', Developments in theoretical geomechanics: Proc., of the Booker memorial symposium, J. P, Carter and D. W. Smith (eds.), Balkema, Rotterdam, 139-153
  10. Yamamoto, K. and Kusuda, K. (2001), 'Failure mechanisms and bearing capacities of reinforced foundations', Geotextiles and Geomembranes, 19, 127-162 https://doi.org/10.1016/S0266-1144(01)00003-6