• Title/Summary/Keyword: Stokes 수

Search Result 531, Processing Time 0.027 seconds

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yamashiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.853-858
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation have been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use this method for calculations in the case of random waves because long and stable computation (e.g for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand if the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, can be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes' 5th order wave propagation and a random wave propagation.

A Numerical Analysis on the solution of Poisson Equation by Direct Method (직접법을 이용한 Poisson 방정식 수치해법에 관하여)

  • Y.S. Shin;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.62-71
    • /
    • 1995
  • In the numerical analysis of incompressible unsteady Navier-stokes equation, large time is required for solving the pressure Poisson equation of the elliptic type at each time step. In this paper, a numerical analysis by the direct method is carried out to solve the pressure Poisson equation and the computing time is analyzed as mesh size increases. The pressure Poisson equation can be transformed to the boundary value problem by the Green theorem. The computing time for the convolution type of the domain integral can be reduced by using F.F.T. and the computing time in the direct method depends entirely on obtaining the solution of the boundary value problem. The numerical analysis on the known solutions is carried out and compared for the verification of the direct method. And the numerical analysis on the body boundary and domain decomposition problem are carried out with the computing time less than O($n^{3}$) in the (n.n) mesh.

  • PDF

Numerical Analysis on Self-Burial Mechanism of Submarine Pipeline with Spoiler under Steady Flow (정상흐름 하에서 스포일러 부착형 해저파이프라인의 자가매설 기구에 관한 수치해석)

  • Lee, Woo Dong;Hur, Dong Soo;Kim, Han Sol;Jo, Hyo Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.146-159
    • /
    • 2016
  • This study used Navier-Stokes Solver(LES-WASS-2D) for analyzing hydrodynamic characteristics with high order in order to analyze self-burial mechanism of pipeline with spoiler under steady flow. For the validity and effectiveness of numerical model used, it was compared and analyzed with the experiment to show flow characteristics around the pipeline with and without the spoiler. And the hydraulic(flow, vortex, and pressure) and force characteristics were numerically analyzed around the pipeline according to the incident velocity, and shape and arrangement of spoiler. Primarily, if the spoiler is attached to the pipeline, the projected area is increased resulting in higher flow velocity toward the back and strong vortex caused by wake stream in the back. Secondly, the spoiler causes vertically asymmetric flow and vorticity fields and thus asymmetric pressure field. It increases the asymmetry of force on the pipe and thus develops large downward fluid force. Both of them are the causes of selfburying of the pipeline with spoiler.

Improved Trajectory Calculation on the Semi-Lagrangian Advection Computation (Semi-Lagrangian 이류항 계산의 추적법 개선)

  • Park, Su-Wan;Baek, Nak-Hoon;Ryu, Kwan-Woo
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.419-426
    • /
    • 2009
  • To realistically simulate fluid, the Navier-Stokes equations are generally used. Solving these Navier-Stokes equations on the Eulerian framework, the non-linear advection terms invoke heavy computation and thus Semi-Lagrangian methods are used as an approximated way of solving them. In the Semi-Lagrangian methods, the locations of advection sources are traced and the physical values at the traced locations are interpolated. In the case of Stam's method, there are relatively many chances of numerical losses, and thus there have been efforts to correct these numerical errors. In most cases, they have focused on the numerical interpolation processes, even simultaneously using particle-based methods. In this paper, we propose a new approach to reduce the numerical losses, through improving the tracing method during the advection calculations, without any modifications on the Eulerian framework itself. In our method, we trace the grids with the velocities which will let themselves to be moved to the current target position, differently from the previous approaches, where velocities of the current target positions are used. From the intuitive point of view, we adopted the simple physical observation: the physical quantities at a specific position will be moved to the new location due to the current velocity. Our method shows reasonable reduction on the numerical losses during the smoke simulations, finally to achieve real-time processing even with enhanced realities.

Rhus verniciflua Extract Ingestion and Exercise Training on Blood Lipids and Insulin Resistance in Rats (옻나무 추출액 섭취와 운동훈련이 흰쥐의 혈중 지질 및 인슐린 저항성에 미치는 영향)

  • Lee, Youn-Kyung;Lee, Soo-Chun;Jeon, Byung-Duk;Kim, Sea-Hyun;Kim, Pan-Gi;Ryu, Sungpil
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.681-689
    • /
    • 2009
  • We investigated the effect of Rhus verniciflua Stokes extract ingestion with exercise training on plasma lipids and insulin resistance for 8 weeks. Forty SD (Sprague-Dawley) male rats were used as the experimental animals that were divided into CON (control), RVS (Rhus verniciflua Stokes), EXE (exercise training), and RVS-EXE (Rhus verniciflua Stokes with exercise training), respectively. Body weight gain in EXE (202%) and RVS-EXE (203%) was significantly lower than CON (253%) and RVS (239). Stored fats were significantly lower with RVS and/or exercise training. Blood lipids were enhanced in RVS and RVS-EXE compared to CON. Blood glucose was significantly high in CON compared to the other groups. Insulin and HOMA index has the same tendencies with glucose, however, the synergic effect was found in RVS-EXE. In conclusion, Rhus verniciflua Stokes extract ingestion with exercise training has the effect of lowering amount of stored fats, reducing blood lipids, and enhancing insulin resistance, therefore, metabolic syndrome, diabetes, obesity, and hyperlipidemia might be prevented.

Numerical Analysis of Nonlinear Shoaling Characteristics over Surf Zone Using SPH and Lagrangian Dynamic Smagronsky Model (Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역에서의 비선형 천수거동에 관한 연구)

  • Cho, Yong-Jun;Lee, Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-96
    • /
    • 2007
  • Nonlinear shoaling characteristics over surf zone are numerically investigated based on spatially averaged NavierStokes equation. We also test the validity of gradient model for turbulent stresses due to wave breaking using the data acquainted during SUPERTANK LABORATORY DATA COLLECTION PROJECT(Krauss et al., 1992). It turns out that the characteristics length scale of breaking induced current is not negligible, which firmly stands against ever popular gradient model, ${\kappa}-{\varepsilon}$ model, but favors Large Eddy Simulation with finer grid. Based on these observations, we model the residual stress of spatially averaged NavierStokes equation after Lagrangian Dynamic Smagorinsky(Meneveau et al., 1996). We numerically integrate newly proposed wave equations using SPH with Gaussian kernel function. Severely deformed water surface profile, free falling water particle, queuing splash after landing of water particle on the free surface and wave finger due to structured vortex on rear side of wave crest(Narayanaswamy and Dalrymple, 2002) are successfully duplicated in the numerical simulation of wave propagation over uniform slope beach, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

Evaluation of Thermal Performances of Various Fan-Shaped Pin-Fin Geometries (다양한 부채꼴 핀휜 형상의 열성능 평가)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.557-570
    • /
    • 2014
  • The heat transfer, pressure loss, and thermal performance in a cooling channel were evaluated for various new fan-shaped pin-fin geometries using three-dimensional Reynolds-averaged Navier-Stokes equations. The turbulence was modeled using the low-Reynolds-number SST turbulence model in the Reynolds number range of 5,000-100,000. The numerical results for the area-averaged Nusselt numbers were validated by comparing them with the experimental data under the same conditions. A parametric study for three types of fan-shaped pin-fin geometries was performed with two parameters, namely, the leading and trailing reduction angles.

A Numerical Analysis of Pulse-Jet Cleaning Characteristics for Ceramic Filter System Design (세라믹필터 집진장치의 역세정 시스템 설계를 위한 유동해석)

  • 정재화;서석빈;김시문;안달홍;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.197-206
    • /
    • 2003
  • A numerical analysis of the pulse-jet cleaning characteristics in a porous ceramic candle filter system was performed. To obtain the detailed velocity and pressure distribution during the cleaning process in a porous filter system, the axi-symmetric compressible Navier-Stokes equations including energy conservation equation were solved by using the FLUENT code which adopts FVM (Finite Volume Method). The effects of pulse cleaning nozzle diameter, nozzle tip position, permeability of a porous ceramic candle filter, diffuser throat diameter, and cleaning pressure on the cleaning flow characteristics were investigated extensively.

Numerical Investigation of Geometrical Design Variables for Improvement of Aerodynamic Performance of Supersonic Impulse Turbine (초음속 충동형 터빈익형의 공력성능 향상을 위한 기하학적 설계변수 수치연구)

  • Lee,Eun-Seok;Kim,Jin-Han;Jo,Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.99-106
    • /
    • 2003
  • Geometrical design variables are numerically investigated to improve aerodynamic performance of the supersonic impulse turbine of a turbopump in a liquid rocket engine. Aerodynamic redesign was performed for maximization of the blade power. Four design variables considered are blade angle, blade thickness and radii of upper and lower arc blade with appropriate constraints. A fast Navier-Stokes solver was developed and Chien's k-$\varepsilon$ turbulence modelling was used for turbulence closure. In initial shape, a flow separation was found in the middle of blade chord. However, it disappeared in final shape via its geometrical design variable change. About 3.2 percent of blade power was increased from this research.