Numerical Analysis of Nonlinear Shoaling Characteristics over Surf Zone Using SPH and Lagrangian Dynamic Smagronsky Model

Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역에서의 비선형 천수거동에 관한 연구

  • Cho, Yong-Jun (Department of Civil Engineering, University of Seoul) ;
  • Lee, Heon (Department of Civil Engineering, University of Seoul)
  • 조용준 (서울시립대학교 토목공학과) ;
  • 이헌 (서울시립대학교 토목공학과)
  • Published : 2007.02.28

Abstract

Nonlinear shoaling characteristics over surf zone are numerically investigated based on spatially averaged NavierStokes equation. We also test the validity of gradient model for turbulent stresses due to wave breaking using the data acquainted during SUPERTANK LABORATORY DATA COLLECTION PROJECT(Krauss et al., 1992). It turns out that the characteristics length scale of breaking induced current is not negligible, which firmly stands against ever popular gradient model, ${\kappa}-{\varepsilon}$ model, but favors Large Eddy Simulation with finer grid. Based on these observations, we model the residual stress of spatially averaged NavierStokes equation after Lagrangian Dynamic Smagorinsky(Meneveau et al., 1996). We numerically integrate newly proposed wave equations using SPH with Gaussian kernel function. Severely deformed water surface profile, free falling water particle, queuing splash after landing of water particle on the free surface and wave finger due to structured vortex on rear side of wave crest(Narayanaswamy and Dalrymple, 2002) are successfully duplicated in the numerical simulation of wave propagation over uniform slope beach, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

단조해안에서의 비선형 천수거동을 가장 강건한 파랑모형인 Navier Stokes 식에 기초하여 수치모의 하였다. 이와 더불어 SUPERTANK LABORATORY DATA COLLECTION PROJECT(Krauss et al., 1992)에서 취득한 자료를 활용하여 Reynolds 응력에 대한 구배모형의 한계를 검증하였다. 취득한 쇄파대 유동계의 자기상관함수는 상당한 특성길이를 지니며 이러한 결과는 구배모형이 큰 오류를 야기할 수 있다는 사실을 시사한다. 이러한 인식에 기초하여 파랑모형은 Large Eddy Simulation(LES), Smooth Particle Hydrodynamics(SPH), Gaussian kernel function을 사용하여 수치 적분하였다. 잔차응력은 Lagrangian Dynamic Smagronski 모형(Meneveau et al.,1996)을 활용하여 모의하였으며 모의 기간 중 유체 알갱이간의 이격거리는 관성부영역의 특성길이보다 작게 유지되도록 노력하였다. 천수과정에서 진행되는 동조 비동조 고차 조화성분으로 전이된 파랑에너지로 인해 상당히 예리하고 왜도된 파형, 파형의 마루로부터 시작되는 물입자 자유낙하, 착수로 인한 커다란 물보라의 형성, 물보라 형성층의 해변으로의 이행, wave finger(Narayanaswamy와 Darlymple, 2002) 등이 비교적 정확히 재현되는 등 상당히 고무적인 결과를 얻었다.

Keywords

References

  1. Airy, G.B., 1945. Tides and waves. Encycl. Metrop., Section VI
  2. Batchelor, G.K., 1967. An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, UK
  3. Dalrymple, R.A. and Knio, O., 2000. SPH Modeling of water waves, Proc. Coastal Dynm., Lund 2000
  4. Dalrymple, R.A., Knio, O., Cox, D.T., GomezGesteira, M. and Zou, S., 2001. Using a Lagrangian particle method for deck overtopping, Proc. Waves, ASCE , 1082-1091
  5. Dalrymple, R.A. and Rogers, B.D., 2006. Numerical modeling of water waves with the SPH method, Coastal Engineering, Vol. 53, 141-147 https://doi.org/10.1016/j.coastaleng.2005.10.004
  6. Dean, R.G. and Dalrymple, R.A., 1991. Water wave mechanics for engineers and scientists, World Scientific
  7. Elgar S., Gallagher E.L. and Guza R.T., 2001. Nearshore sandbar migration. Journal of Geophysical Research., Vol. 106, 11,623-11,627
  8. Gingold, A. and Monaghan, J.J., 1977. Smoothed particle hydrodynamics: theory and application to nonspherical stars, Mon. Not. R. Astr. Soc. 181, 375-389 https://doi.org/10.1093/mnras/181.3.375
  9. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., 1991. A dynamic subgridscale eddy viscosity model, Phys. Fluids, A3, 1760-1765
  10. GomezGesteira, M., Cerqueiro, D., Crespo, C. and Dalrymple, R.A., 2005. Green water overtopping analyzed with a SPH medel, Ocean Engineering, Vol. 32, 223-238 https://doi.org/10.1016/j.oceaneng.2004.08.003
  11. Kraus, N.C., Smith, J.M. and Sollitt, C.K., 1992. SUPERTANK laboratory data Collection project, Proceedings of the 23rd Coastal Engineering Conference, ASCE, 2191-2204
  12. Kolmogorov, A.N., 1942. The equations of turbulent motion in an incompressible fluid. Izvestia Acad. Sci., USSR; Phys., 6, 56-58
  13. Komar, P.D., 1976. Beach processes and sedimentation, Prentice Hall
  14. Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis. Astronomical Journal 82, 10131024
  15. Menevenau, C., Lund, T.S. and Cabot, W. H., 1996. A Lagrangian dynamic subgridscale model of turbulence. Journal of Fluid Mech., Vol. 319, 353-385 https://doi.org/10.1017/S0022112096007379
  16. Monaghan J.J., 1994. Simulating free surface flows with SPH. Journal of Computational Physics 110, 399-406 https://doi.org/10.1006/jcph.1994.1034
  17. Morris, J.P., Fox, P.J. and Zhu, Y., 1997. Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics 136, 214-226 https://doi.org/10.1006/jcph.1997.5776
  18. Narayanaswamy, M. and Dalrymple, R.A., 2002. An experimental study of surface instabilities during wave breaking. Proc. of 28th ICCE, ASCE, 344-355
  19. Peregrine, D.H. and Svendsen, I.A., 1978. Spilling breakers, bores and hydraulic jumps. Proc. of 16th ICCE, ASCE, 540-550
  20. Pope, Stephen B., 2004. Ten questions concerning the largeeddy simulation of turbulent flows. New Journal of Physics, Vol. 6, No. 35, 1-24 https://doi.org/10.1088/1367-2630/6/1/001
  21. Rodi, Wolfgang, 1993. Turbulence models and their application in hydraulics a state of art review, International Association for Hydraulic Research, Delft, 3rd edition 1993, Balkema
  22. Smagorincky, J., 1963. General circulation experiments with primitive equations, I. the Basic Experiment, Monthly Weather Review, Vol. 91, 99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  23. Takeda, H., Shoken, M. M, and Minoru, Sekiya, 1994. Numerical simulation of viscous flow by smoothed particle hydrodynamics. Progress in Theoretical Physics 92, 939-959 https://doi.org/10.1143/PTP.92.939
  24. Tennekes, H., and Lumley, J. L., 1992. A first course in turbulence, The MIT Press, Cambridge
  25. Veeramony, J. and Svendsen, I. A., 1999. Modeling the flow in surf zone waves. Research Report NO. CACR9904, Center for applied coastal research, Univ. of Delaware, Newark, Delaware
  26. Yoshizawa, A., 1986. Statistical theory for compressible turbulent shear flows with application to subgrid modeling, Physics of Fluids A 29, 2152-2164 https://doi.org/10.1063/1.865552