• Title/Summary/Keyword: Stiffness Optimization

Search Result 519, Processing Time 0.04 seconds

A Practical Research of Engine Mount Optimization in a Construction Equipment (건설기계 엔진마운트 최적설계에 관한 실용적 연구)

  • Shin, Myung-Ho;Joo, Kyung-Hoon;Kim, Woo-Hyung;Kim, In-Dong;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.792-796
    • /
    • 2013
  • A practical process to optimize engine mounts on construction equipment is presented in this research. Transmitted force from the engine is estimated by using stiffness of the mount rubber which varies with frequency, amplitude and pre-load, and by the engine excitation force that comes from piston mass and gas pressure and so on. The transmitted force is measured through TPA(Transfer Path Analysis) and is then compared with the estimated force. The optimum mount position and stiffness are solved using MATLAB. The result shows the improvement on engine mount vibration.

  • PDF

Wing weight estimation considering constraints of structural strength and stiffness in aircraft conceptual design

  • Bai, Chen;Mingqiang, Luo;Zhong, Shen;Zhe, Wu;Yiming, Man;Lei, Fang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.383-395
    • /
    • 2014
  • According to the requirement of wing weight estimation and frequent adjustments during aircraft conceptual design, a wing weight estimation method considering the constraints of structural strength and stiffness is proposed to help designers make wing weight estimations rapidly and accurately. This method implements weight predictions on the basis of structure weight optimization with stiffness constraints and strength constraints, which include achievement of wing shape parametric modeling, rapid structure layout, finite element (FE) model automated generation, load calculation, structure analysis, weight optimization, and weight computed based on modeling. A software tool is developed with this wing weight estimation method. This software can realize the whole process of wing weight estimation with the method and the workload of wing weight estimation is reduced because much of the work can be completed by the software. Finally, an example is given to illustrate that this weight estimation method is effective.

Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm

  • Aydin, E.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.349-368
    • /
    • 2015
  • This paper presents a new algorithm to find the optimal distribution of steel diagonal braces (SDB) using artificial bee colony optimization technique. The four different objective functions are employed based on the transfer function amplitude of; the top displacement, the top absolute acceleration, the base shear and the base moment. The stiffness parameter of SDB at each floor level is taken into account as design variables and the sum of the stiffness parameter of the SDB is accepted as an active constraint. An optimization algorithm based on the Artificial Bee Colony (ABC) algorithm is proposed to minimize the objective functions. The proposed ABC algorithm is applied to determine the optimal SDB distribution for planar buildings in order to rehabilitate existing planar steel buildings or to design new steel buildings. Three planar building models are chosen as numerical examples to demonstrate the validity of the proposed method. The optimal SDB designs are compared with a uniform SDB design that uniformly distributes the total stiffness across the structure. The results of the analysis clearly show that each optimal SDB placement, which is determined based on different performance objectives, performs well for its own design aim.

Structural Layout Optimization Strategy Considering Assemblage (조립성을 고려한 위상 최적설계법 개발)

  • Choi Guk-Jin;Kim Myung-Jin;Kim Yoon-Young;Jang Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.512-519
    • /
    • 2006
  • In the ground-structure-based topology optimization, beam elements are regarded to be rigidly connected to each other, and joints are assumed to have infinite stiffness. Thus the optimized topology of a structure is obtained according to the assumption of no joint effect, and the resulting structure should be manufactured in one piece if the joint effect is to be excluded as much as possible. The underlying problems are that 1) the performance of the structure might be seriously decreased if the members of the structure are connected through welding or bolting, not manufactured in one piece, and 2) the topology of the structure will be changed if the joint effect is taken into account. In the paper, the assemblage issue is considered on topology optimization, and a new formulation based on the joint stiffness-varied ground beam structure is developed. Joints of a beam structure are modeled by elastic spring elements whose stiffnesses are controlled by design variables during the optimization.

The Effectiveness Analysis Due to the Use of Lagrange Equation and the Optimization Technology for Design of the Support Structure of the Optical Mirror System (광학거울 시스템의 지지구조 설계를 위한 라그랑지 방정식과 최적화 기법 적용에 의한 효과분석)

  • Gimm, Hak In;Nam, Byoung Uk;Kim, Gwang Tae;Kim, Byung Un
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.264-278
    • /
    • 2018
  • The support structure of an optical mirror system is the one of the important design elements because the one affects the optical aberrations of the mirror surface. In this paper, Lagrange equation of the moving body of the fast steering mirror system(FSM) has been formulated to use with optimization design. Major goals for optimization are to assign the reasonably flexible stiffness to the structure and to enhance the first natural frequency of the mirror and support system in aid of more affordable control bandwidth for the FSM. Pursuing these purposes with the proposed method, the finite element analysis(FEA), optimization technique and the Zernike polynomial estimation are used for the design effects. It is concluded that the proposed approach for design well guides toward the desired design goals with regards to both structural and optical performances.

Optimum parameterization in grillage design under a worst point load

  • Kim Yun-Young;Ko Jae-Yang
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • The optimum grillage design belongs to nonlinear constrained optimization problem. The determination of beam scantlings for the grillage structure is a very crucial matter out of whole structural design process. The performance of optimization methods, based on penalty functions, is highly problem-dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm ($R{\mu}GA$) is proposed to find the optimum beam scantlings of the grillage structure without handling any of penalty functions. $R{\mu}GA$ can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. Direct stiffness method is used as a numerical tool for the grillage analysis. In optimization study to find minimum weight, sensitivity study is carried out with varying beam configurations. From the simulation results, it has been concluded that the proposed $R{\mu}GA$ is an effective optimization tool for solving continuous and/or discrete nonlinear real-world optimization problems.

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.

A study on the design optimization of the head stucture of 5-axis machining center using finite element analysis (유한요소해석을 이용한 5축 복합가공기 헤드 구조물의 최적 설계에 관한 연구)

  • Kim, Jae-Seon;Lee, Meong-Ho;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.161-168
    • /
    • 2021
  • As the demand for high speed and high precision increases in the field of machine tool, interest in stiffness and vibration of machine tool is increasing. However, it takes a lot of time to develop a detailed design of machine tool based on experience, and it is difficult to design appropriately. Recently, structural optimization using FEM are increasingly used in machine tool design. But, it is difficult to optimize in consideration of the vibration state of the structure since optimization through stress distribution of a structure is mainly used, In this paper, Static structural analysis, mode analysis, and harmonic analysis using FEM were conducted to optimize the head structure that has the most influence on machining in a 5-axis machine tool. It is proposed a topology optimization analysis method that considers both static stiffness and dynamic stiffness using objective function design.

Effect on Drive Point Dynamic Stiffness and Lightweight Chassis Component by using Topology and Topography Optimization (위상 및 형상 최적화기법에 의한 샤시부품의 국부동강성 및 경량화 효과)

  • Park, Jeong-hun;Jeon, Seung-tae;Lee, Tae-jin;Kang, Jeong-dae;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.141-147
    • /
    • 2018
  • Recently, interest in customers has shifted to the emotional quality of customers as the driving, handling, and collision stability of automobiles have been greatly improved. The NVH performance of a vehicle is quantified and evaluated from the DPDS. To improve the DPDS, we need to optimize the shape without considering the increases in thickness of the parts or additions to the parts. And at the same time, we need to establish design and analysis processes to satisfy the requirements of the DPDS.

The Stiffness Analysis and Optimization of the Rubber Seat Considering Nonlinear Behavior (비선형거동을 고려한 방진고무의 강성해석 및 최적설계)

  • Lee, Dong-Hoon;Seo, Sang-Ho;Yun, Young-Hoon;Park, Jin-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.244-249
    • /
    • 2002
  • Rubber seat is extensively used to reduce the vibration of machine or structure. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties to analyze static characteristics of rubber components with hyper elasticity and nonlinear large deformation. In this paper material property is obtained by strain-stress curve using a tension test. Mooney-Rivlin Coefficients are gotten by fitting strain-stress curve. The visco-elastic characteristics of refrigerator rubber mount is determined by using ANSYS. And to minimize the rubber stiffness, the rubber seat shape optimization is performed.

  • PDF