DOI QR코드

DOI QR Code

Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm

  • Aydin, E. (Department of Civil Engineering, Nigde University) ;
  • Sonmez, M. (Department of Civil Engineering, Aksaray University) ;
  • Karabork, T. (Department of Civil Engineering, Aksaray University)
  • Received : 2014.02.13
  • Accepted : 2015.01.13
  • Published : 2015.08.25

Abstract

This paper presents a new algorithm to find the optimal distribution of steel diagonal braces (SDB) using artificial bee colony optimization technique. The four different objective functions are employed based on the transfer function amplitude of; the top displacement, the top absolute acceleration, the base shear and the base moment. The stiffness parameter of SDB at each floor level is taken into account as design variables and the sum of the stiffness parameter of the SDB is accepted as an active constraint. An optimization algorithm based on the Artificial Bee Colony (ABC) algorithm is proposed to minimize the objective functions. The proposed ABC algorithm is applied to determine the optimal SDB distribution for planar buildings in order to rehabilitate existing planar steel buildings or to design new steel buildings. Three planar building models are chosen as numerical examples to demonstrate the validity of the proposed method. The optimal SDB designs are compared with a uniform SDB design that uniformly distributes the total stiffness across the structure. The results of the analysis clearly show that each optimal SDB placement, which is determined based on different performance objectives, performs well for its own design aim.

Keywords

References

  1. Aydin, E. and Boduroglu, M.H. (2008), "Optimal placement of steel diagonal braces for upgrading the seismic capacity of the existing structures and its comparison with optimal dampers", J. Constr. Steel Res., 64(1), 72-86. https://doi.org/10.1016/j.jcsr.2007.04.005
  2. Aydin, E., Boduroglu, M.H. and Guney, D. (2007), "Optimal damper distribution for seismic rehabilitation of planar building structures", Eng. Struct., 29(2), 176-185. https://doi.org/10.1016/j.engstruct.2006.04.016
  3. Bansal, J.C., Sharma, H. and Jadon, S.S. (2013), "Artificial bee colony algorithm: A survey", Int. J. Adv. Intell. Paradigms, 5(1-2), 123-159. https://doi.org/10.1504/IJAIP.2013.054681
  4. Bartera, F. and Giacchetti, R. (2003), "Steel dissipating braces for upgrading existing building frames", J. Constr. Steel Res., 60(3-5), 751-769. https://doi.org/10.1016/S0143-974X(03)00141-X
  5. Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999), Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, NY, USA.
  6. Choi, H. and Kim, J. (2005), "Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum", Eng. Struct., 28(2), 304-311. https://doi.org/10.1016/j.engstruct.2005.08.008
  7. Cimellaro, G.P. (2007), "Simultaneous stiffness-damping optimization of structures with respect to acceleration displacement and base shear", Eng. Struct., 29(11), 2853-2870. https://doi.org/10.1016/j.engstruct.2007.01.001
  8. Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, (2nd Ed.), McGraw-Hill, NewYork, NY, USA.
  9. Colunga, A.T. and Vergara, A.A. (1997), "Comparative study on the seismic retrofit of a mid-rise steel building: steel bracing vs. energy dissipation", Earthq. Eng. Struct. D., 26(6), 637-655. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<637::AID-EQE666>3.0.CO;2-R
  10. Downs, R.E., Hjelmstat, K.D. and Foutch, D.A. (1991), "Evaluation of two RC building retrofit with steel bracing", Structural Research Series No: 563, Department of Civil Engineering, University of Illinois at Urbana-Champaign, IL, USA.
  11. Farhad, F., Nakamura, S. and Takahashi, K. (2009), "Application of genetic algorithm to optimization of buckling restrained braces for seismic upgrading of existing structures", Comput. Struct., 87(1-2), 110-119. https://doi.org/10.1016/j.compstruc.2008.08.002
  12. Fiouz, A.R.M., Obeydi, M., Forouzani, H. and Keshavarz, A. (2012), "Discrete optimization of trusses using an artificial Bee Colony (ABC) algorithm and the fly-back mechanism", Struct. Eng. Mech., Int. J., 44(4), 501-519. https://doi.org/10.12989/sem.2012.44.4.501
  13. Frisch, V.K. (1967), Dance Language and Orientation of Bees, Harvard University Press, Cambridge, MA, USA.
  14. Ghobarah, A. and Elfath, A.H. (2001), "Rehabilitation of a reinforced concrete frame using eccentric steel bracing", Eng. Struct., 23(7), 745-755. https://doi.org/10.1016/S0141-0296(00)00100-0
  15. Gorgulu, T., Tama, Y.S., Yilmaz, S. and Kaplan, H. (2012), "Strengthening of reinforced concrete structures with external steel shear walls", J. Constr. Steel Res., 70, 226-235. https://doi.org/10.1016/j.jcsr.2011.08.010
  16. Kanaji, H., Kitazawa, M. and Suzuki, N. (2003), "Seismic retrofit strategy using damage control design concept and the response reduction effect for a long-span truss bridge", Proceedings of the 19th US-Japan Bridge Engineering Workshop, Tsukuba, Japan, October.
  17. Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical Report-TR06; Computer Engineering Department: Computer Engineering Department, Erciyes University, (in Turkish).
  18. Karaboga, D. and Basturk, B. (2008), "On the performance of artificial bee Colony (ABC)", Appl. Soft. Comp., 8, 687-697. https://doi.org/10.1016/j.asoc.2007.05.007
  19. Karaboga, D. and Akay, B. (2009), "Survey: Algorithms simulating bee swarm intelligence", Artif. Intell Rev., 31, 61-85. https://doi.org/10.1007/s10462-009-9127-4
  20. Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014), "A comprehensive survey: Artificial bee colony (ABC) algorithm and applications", Artif. Intell. Rev., 42, 21-57. https://doi.org/10.1007/s10462-012-9328-0
  21. Kawamata, S. and Masaki, Q. (1980), "Strengthening effect of eccentric steel diagonal braces to existing RC frames", Proceedings of the 7th World Conference on Earthquake Engineering, Istanbul, Turkey, August.
  22. Kennedy, J., Eberhart, R.C. and Shi, Y. (2001), Swarm Intelligence, Morgan Kaufmann Publishers, San Francisco, CA, USA.
  23. Kim, J. and Choi, H. (2004), "Behaviour and design of structures with buckling-restrained braces", Eng. Struct., 26(6), 693-706. https://doi.org/10.1016/j.engstruct.2003.09.010
  24. Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
  25. Lemmens, N., Jong, S., Tuyls, K. and Nowe, A. (2007), "Bee behaviour in multi-agent systems: A bee foraging algorithm", Proceedings of the 7th ALAMAS Symposium, The Hague, Netherlands, April.
  26. Maheri, M.R. and Sahebi, A. (1997), "Use of steel bracing in reinforced concrete frames", Eng. Struct., 19(12), 1018-1024. https://doi.org/10.1016/S0141-0296(97)00041-2
  27. Miranda, E. (1991), "Seismic evaluation and upgrading of existing structures", Ph.D. Thesis; University of California at Berkeley, CA, USA.
  28. Mitchell, D. and Dandurand, A. (1988), "Repair and upgrading of concrete structures in Mexico City after the 1985 earthquake", Can. J. Civil Eng., 15(6), 1052-1066. https://doi.org/10.1139/l88-138
  29. Pham, D.T., Granbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M.T. (2006), "The bee algorithm- A novel tool for complex optimization problems", Proceedings of Intelligent Production Machines and Systems (IPROMS), Cardiff, UK, July.
  30. Sarnoa, L.D. and Elnashaib, A.S. (2009), "Bracing systems for seismic retrofitting of steel frames", J. Construct. Steel Res., 65(2), 452-465. https://doi.org/10.1016/j.jcsr.2008.02.013
  31. Sonmez, M. (2011a), "Artificial bee colony algorithm for optimization of truss structures", Appl. Soft Comput. J., 11(2), 2406-2418. https://doi.org/10.1016/j.asoc.2010.09.003
  32. Sonmez, M. (2011b), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidisc. Optim., 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5
  33. Sonmez, M., Aydin, E. and Karabork, T. (2013), "Using an artificial bee colony algorithm for optimal placement of viscous damper in planar building frames", Struct. Multidisc. Optim., 48(2), 395-409. https://doi.org/10.1007/s00158-013-0892-y
  34. Takewaki, I. (1999), "Displacement-acceleration control via stiffness-damping collaboration", Earthq. Eng. Struct. D., 28(12), 1567-1585. https://doi.org/10.1002/(SICI)1096-9845(199912)28:12<1567::AID-EQE882>3.0.CO;2-1
  35. Takewaki, I. (2000), "Optimum damper placement for planar building frames using transfer functions", Struct. Mult.-Disp. Optim., 20(4), 280-287. https://doi.org/10.1007/s001580050158
  36. Teodorovic, D. (2009), "Bee Colony Optimization (BCO)", Innov. Swarm. Intell., 248, 39-60. https://doi.org/10.1007/978-3-642-04225-6_3
  37. Topal, U. and Ozturk, H.T. (2014), "Buckling load optimization of laminated plates via artificial bee colony algorithm", Struct. Eng. Mech., Int. J., 52(4), 755-765. https://doi.org/10.12989/sem.2014.52.4.755
  38. Turker, T. and Bayraktar, A. (2011), "Experimental and numerical investigation of brace configuration effects on steel structures", J. Construct. Steel Res., 67(5), 854-865. https://doi.org/10.1016/j.jcsr.2010.12.008
  39. Usami, T., Lu, Z.H. and Ge, H.B. (2005), "A seismic upgrading method for steel arch bridges using buckling-restrained braces", Earthq. Eng. Struct. D., 34(4-5), 471-496. https://doi.org/10.1002/eqe.442
  40. Valle, C.E.D. (1980), "Some lessons from the March 14, 1979 earthquake in Mexico City", Proceedings of 7th World Conference on Earthquake Engineering, Istanbul, Turkey, September.
  41. Valle, C.E.D., Foutch, D.A., Hjelmstad, K.D., Gutierrez, E.F. and Colunga, A.T. (1988), "Seismic retrofit of RC building: A case study", Proceedings of 9th World Conference on Earthquake Engineering, Kyoto, Tokyo, Japan, August.
  42. Wang, D. (2006), "Optimal design of structural support positions for minimizing maximal bending moment", Finite Elem. Anal. Des., 43, 95-102. https://doi.org/10.1016/j.finel.2006.07.004
  43. Yamamato, Y. and Aoyama, H. (1987), "Seismic behaviour of existing RC frame strengthened with retrofitting steel elements", Proceedings of U.S.-Japan Seminar on Repair and Retrofit of Existing Structures, UJNR, Tsukuba, Japan, May.

Cited by

  1. Estimating transportation energy demand in Turkey using the artificial bee colony algorithm vol.122, 2017, https://doi.org/10.1016/j.energy.2017.01.074
  2. Seismic analysis of steel structure with brace configuration using topology optimization vol.21, pp.3, 2016, https://doi.org/10.12989/scs.2016.21.3.501
  3. Optimum design of RC shallow tunnels in earthquake zones using artificial bee colony and genetic algorithms vol.17, pp.4, 2016, https://doi.org/10.12989/cac.2016.17.4.435
  4. Conceptual configuration and seismic performance of high-rise steel braced frame vol.23, pp.2, 2015, https://doi.org/10.12989/scs.2017.23.2.173
  5. Design of steel frames by an enhanced moth-flame optimization algorithm vol.24, pp.1, 2015, https://doi.org/10.12989/scs.2017.24.1.129
  6. ÇELİK YAPILARDA KULLANILAN DİYAGONAL ÇELİK ÇAPRAZLARIN YAPAY ARI KOLONİ ALGORİTMASI İLE OPTİMİZASYONU vol.23, pp.1, 2015, https://doi.org/10.17482/uumfd.414427
  7. Strengthening of concrete structures with buckling braces and buckling restrained braces vol.5, pp.3, 2015, https://doi.org/10.12989/smm.2018.5.3.391