DOI QR코드

DOI QR Code

A study on the design optimization of the head stucture of 5-axis machining center using finite element analysis

유한요소해석을 이용한 5축 복합가공기 헤드 구조물의 최적 설계에 관한 연구

  • Kim, Jae-Seon (Department of Mechanical Engineering, Graduate School of Daegu University) ;
  • Lee, Meong-Ho (Department of Mechanical Engineering, Graduate School of Daegu University) ;
  • Youn, Jae-Woong (Division of Mechanical Engineering, Daegu University)
  • 김재선 (대구대학교 기계공학부) ;
  • 이명호 (대구대학교 기계공학부) ;
  • 윤재웅 (대구대학교 기계공학부)
  • Received : 2021.08.06
  • Accepted : 2021.09.20
  • Published : 2021.09.28

Abstract

As the demand for high speed and high precision increases in the field of machine tool, interest in stiffness and vibration of machine tool is increasing. However, it takes a lot of time to develop a detailed design of machine tool based on experience, and it is difficult to design appropriately. Recently, structural optimization using FEM are increasingly used in machine tool design. But, it is difficult to optimize in consideration of the vibration state of the structure since optimization through stress distribution of a structure is mainly used, In this paper, Static structural analysis, mode analysis, and harmonic analysis using FEM were conducted to optimize the head structure that has the most influence on machining in a 5-axis machine tool. It is proposed a topology optimization analysis method that considers both static stiffness and dynamic stiffness using objective function design.

복합가공기 분야에서 고속 및 고정밀화에 대한 요구가 늘어남에 따라 복합가공기의 강성과 진동에 관한 관심이 증가하고 있다. 그러나 경험에 의존한 설계로 인해 개발 시간이 많이 소요되며 적절한 설계에도 어려움이 많아 공작기계 설계에 구조 최적화 FEM의 활용이 많아지고 있다. 그러나, 현재 구조물의 응력 분포를 통한 최적화를 주로 활용하고 있어 구조물의 진동 상태를 고려하여 최적화하기에는 어려움이 있다. 본 논문에서는 5축 복합가공기에서 가공에 가장 많은 영향을 끼치는 헤드 구조물의 최적화를 위하여 유한요소해석을 활용한 정적 구조해석, 모드 해석, 가진 주파수 해석을 진행하였으며, 도출된 응력 분포, 변형, 고유진동수, 가진 주파수 그래프를 활용하고 적절한 목적함수와 설계변수를 설정하여 정강성과 동강성을 모두 고려한 위상 최적화 해석 방법을 제시하고자 한다.

Keywords

Acknowledgement

This research was supported by the Daegu University Research Scholarship Grants.

References

  1. S. I. Kim. (2008). Application of CAE technology in the field of machine tool structural design. Journal of the Korean Society of Machine Tool Engineers, 17(1), 14-19. UCI(KEPA): I410-ECN-0101-2009-552-014755877
  2. D. T. Y. Huang & J. J. Lee. (2001). On obtaining machine tool stiffness by CAE techniques. International Journal of Machine Tools & Manufacture, 41, 1149-1163. DOI : 10.1016/S0890-6955(01)00012-8
  3. B. C. Wu, G. S. Young & T. Y. Huang. (2000). Application of a two-level optimization process to conceptual structural design of a machine tool. International Journal of Machine Tools and Manufacture, 40(6), 783-794. DOI : 10.1016/s0890-6955(99)00113-3
  4. D. Cheng, X. Lu & X. Sun. (2018). Multi-objective topology optimization of column structure for vertical machining center, Procedia CIRP, 78, 279-284. DOI : 10.1016/j.procir.2018.08.305
  5. J. U. Woo. (2000). Structural Analysis of Machine Tools Considering Stiffness Modeling of Joints, Master of Engineering. Chung Ang University Graduate school, Seoul.
  6. D. Kono, S. Nishio, I. Yamaji & A. Matsubara. (2015). A method for stiffness tuning of machine tool supports considering contact stiffness. International Journal of Machine Tools and Manufacture, 90, 50-59. DOI : 10.1016/j,ijmachtools.2015.01.001
  7. X. Gao, B. Li, J. Hong & J. Guo, (2016), Stiffness modeling of machine tools based on machining space analysis. The International Journal of Advanced Manufacturing Technology, 86, 2093-2106. DOI : 10.1007/s00170-015-8336-z
  8. Y. Lianqing & W. Liping, (2009), Stiffness Analysis of Machine Tools Using Finite Element Method. 2009 Third International Symposium on Intelligent Information Technology Application, 553-556. DOI : 10.1109/IITA.2009.401
  9. Y. H. Choi, S. K. Park, T. S. Jung, B. H. Cho, J. H. Kim & Y. J. Choi. (2000, April). A Case study on the Static and Dynamic Design Improvement of a Machine Tool Structure by Using F.E.M.. Proceedings of the Korean Society of Machine Tool Engineers Conference, 726-733.
  10. L. Zhao, W. Chen & J. Ma. (2008). Structural bionic optimization of stiffening ribs of a machine tool crossbeam based on giant waterlily vein distribution. Gaojishu Tongxin/Chinese High Technology Letters, 18(8), 806-810.
  11. B. Li, J. Hong, Z. Wang, W. Wu & Y. Chen. (2012). Optimal Design of Machine Tool Bed by Load Bearing Topology Identification with Weight Distribution Criterion. Procedia CIRP, 3, 626-631. DOI : 10.1016/j.procir.2012.07.107
  12. A. Albers, J. Ottnad, H. Weiler & P. Haeussler. (2008). Methods for lightweight design of mechanical components in humanoid robots. IEEE-RAS International Conference on Humanoid, 7th. DOI : 10.1109/ICHR.2007.4813934
  13. L. Zhao, J. Ma, T. Wang & D. Xing. (2010). Lighitweight Design of Mechanical Structures based on Structural Bionic Methodology. Journal of Bionic Engineering, 7, S224-S231. DOI : 10.1016/S1672-6529(09)60239-0
  14. Z. B. Zhang, J. W. Jang, H. C. Lee, W. S. Park, H. C. Shin & S. H. Song. (2016). Stiffness improvement of the column of the horizontal machining center. The Korean Society of Manufacturing Technology Engineers, 123-123. UCI(KEPA):1410-ECN-0101-2016-552-002854671
  15. S. Wang, H. Wang, Q. Han & Y. Gao, (2018). Analysis of dynamic characteristics of five-axis CNC machine tool, 7th International Symposium on Test Automation and Instrumentation, 1-4.