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Optimum parameterization in grillage design under a worst point load
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Abstract : The optimum grillage design belongs to nonlinear constrained optimization problem. The determination of beam scantlings for
the grillage structure is a very crucial matter out of whole structural design process. The performance of optimization methods, based
on penalty functions, is highly problem-dependent and many methods require additional tuning of some variables. This additional tuning
is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic
Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the
above reasons, Real-coded Micro-Genetic Algorithm (RuGA) is proposed to find the optimum beam scantlings of the grillage structure
without handling any of penalty functions. RuGA can help in avoiding the premature convergence and search for global solution—spaces,
because of its wide spread applicability, global perspective and inherent parallelism. Direct stiffness method is used as a numerical tool
for the grillage analysis. In optimization study to find minimum weight, sensitivity study is carried out with varying beam configurations.
From the simulation results, it has been concluded that the proposed Rt GA is an effective optimization tool for solving continuous and/or

discrete nonlinear real-world optimization problems.
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1. Introduction

Grillage is one of the common types of structures in
marine and land-based structural system. Grillage system
that increases the stiffness of plate used by two rectangular
stiffeners is a part of deck, side shell and bottom of ships.
The worst loading point of those structures is dependent on
the loads, which are vertical, in—plane or combination of
those directions as well as boundary conditions. The worst
deflection point is produced when the point load is
examined at central intersection. But the worst loading
point would not necessarily be at the central point. To find
the worst loading point, a traveling point load is applied to
along the vertical and horizontal beams around mid-spans.
Direct stiffness method is used as a numerical tool for the
grillage analysis.

In general, it has known that an effective way to solve
the nonlinear constrained optimization problems is to
transform it into a sequence of unconstrained minimization.
Several methods, which are based on penalty functions,
have been proposed for handling nonlinear/linear constraints
by genetic algorithm for numerical optimization problems.
The performance of these methods is highly problem—
dependent and many methods require additional tuning of
some variables. This additional tuning is the influences of
penalty coefficient, which depend strongly on the degree of

constraint (Koziel and Michalewicz, 1999).

Moreover, each traditional optimization method is specialized

violation

to solve a particular type of problems. When faced with a
different type of problem, the same method may not work as
well.

The Binary-coded Genetic Algorithm (BGA)
certain difficulties when dealing with continuous and/or

meets

discrete search spaces with large dimensions. One difficulty
is the Hamming cliffs associated with certain strings from
which a transition to a neighboring solution requires the
alteration of many bits. The other difficulty is the inability
to achieve a great numerical precision in the optimal
solution (Herrera et al., 1993).

With the aforementioned reasons, Real-coded Micro-
Genetic Algorithm (RpGA) is proposed to find the optimum
beam configuration of grillage structure without handling
any of penalty functions. Micro-Genetic Algorithm (uGA)
explores in a small population with some genetic operators
to find the global optimum solution-spaces (Kim et al,
2006).

The proposed approach has the robustness of parallel
exploration and asymptotic convergence with real wvalue
parameters. Therefore, RuGA can help in avoiding the
premature convergence and search for Dbetter global
solution, because of its wide spread applicability, global
perspective and inherent parallelism.
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The weight function is mainly determined from the
scantling design variables and the arranging geometric
variables of a structure. To find the optimum weight of
grillage structure under a given point load, sensitivity
studies are carried out over the variation of scantlings of
beam section by using RuGA. )

From the simulation results of this paper, it is shown that
the RuGA implementation overcomes the poor convergence
properties and finds the global optimum solution than results
obtained from other metaheuristic methods. Therefore, it has
been concluded that the proposed RuGA is an effective
optimization tool for solving continuous and/or discrete
nonlinear real-world optimization problems within a suitable
computational time frame.

2. Real-coded ga versus binary-coded ga

Genetic Algorithm (GA) had a great measure of success
in search and optimization problems. The reason for a
great part of its success is an ability to exploit the
information accumulated about an initially unknown search
space in order to bias subsequent searches into useful
subspaces.

The binary representation meets certain difficulties when
dealing with continuous and/or discrete search spaces with
large dimensions. One difficulty is the Hamming cliffs
associated with certain strings from which a transition to a
neighboring solution requires the alteration of many bits.
The other difficulty is the inability to achieve a great
numerical precision in the optimal solution (Herrera et al.,
1998). Hamming cliff is produced when the binary coding of
two adjacent values differs in each one of their bits (for
example, the étring 01111 and 10000 represent the values 31
and 32, respectively), and the values of each one of their
positions are different. The Hamming cliff may produce
problems under some conditions, such as the convergence
towards no global optimums. This problem may be solved
by using the Gray code (Caruana and Schaffer, 1938), but
doing so introduces higher order nonlinearities with respect
to recombination, which causes the degree of implicit
parallelism to be reduced (Goldberg, 1989).

It would seem particularly natural to represent the genes
directly as real numbers for optimization problems of
parameters with variables in continuous domains. A
chromosome is a vector of floating point numbers whose
size is kept the same as the length of the vector, which is
the solution to the problem. Each gene represents a variable
of the problem. The values of the genes are forced to
remain in the interval established by the variables which

they represent, so the genetic operators must observe this
requirement.

The use of real parameters makes it possible to use large
domains (even unknown domains) for the variables, which
is difficult to achieve in binary implementations where
increasing the domain would mean sacrificing precision,
assuming a fixed length for the chromosomes. Another
advantage when using real parameters is their capacity to
exploit the graduality of the functions with continuous
variables, where the concept of graduality refers to the fact
that slight changes in the variables correspond to slight
changes in the function. A highlighted advantage of the
RGA is the capacity for the local tuning of the solutions.
For example, Legendre-Gauss mutation allows the tuning
to be produced in a more suitable and faster way than in
the BGA, where the tuning is difficult because of the
Hamming cliff effect.

Using real coding the representation of the solutions is
very close to the natural formation of many problems, e.g.,
there are no differences between the genotype (coding)
and the phenotype (search space). Therefore, the coding
and decoding processes that are needed in the BGA are
avoided, thus increasing the computational speed. Radcliffe
(1992) suggested that a distinction between genotype and
phenotype is not necessary for evolution. Thus, it is not
justified that the definition of the genetic operators should
be made upon the representation chosen. Clearly, since
with the use of real coding the genotype and phenotype
are similar, the expressiveness level reached is very high.
Most real-world problems may not be handled using
binary representations and an operator set consisting only
of binary crossover and binary mutation (Davis, 1989).
The reason is that nearly every real-world domain has
associated domain knowledge that is of use when one is
considering a transformation of a solution in the domain.
Davis (1989) believes that the real-world knowledge
should be incorporated into the GA, by adding it to the
decoding process or expanding the operator set. Real
coding allows the domain knowledge to be easily
integrated into the RGA for the case of problems with
non-trivial restrictions.

According to the above reasons, Real-coded Micro-
Genetic  Algorithm (RuGA) is proposed to solve the
real-world optimization problems with nonlinear constrained
functions without handling any of penalty terms. RuGA,
based on an idea of Michalewicz (1994), explores in a small
population with multiple genetic operators to find the global

optimum solution-spaces.
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3. Real-coded micro—-genetic algorithm

Many optimization methods have been developed by
using point-to-point as well as multi-point approaches.
While a point-to—point approach begins with one candidate
solution and updates the solution iteratively in the hope of
reaching the optimum solution, a multi-point approach deals
The
point-to—point approach is beneficial only when the starting

with a number of solutions in each iteration.
point belongs to the region of attraction of the global
optimum. This implies that any deterministic method could
be attracted by a local optimum instead. Starting with a
number of candidate solutions, the multi-point approach
updates one or more solutions in a synergetic manner in
the hope of steering the population towards the optimum.
Real-coded Genetic Algorithm (RGA) is one of the
optimization methods with multi-point approaches. A
solution is directly represented as a vector of real-parameter
Starting with
solutions (usually randomly created), a set of genetic

deciston variables. a population of such
operators (such as crossover and mutation) is performed to
create a new population in an iterative manner. Although
most RGA differs from each other mainly in terms of their
crossover and mutation operators, they mostly follow one of
a few algorithmic models. .

As has already been pointed out, RuGA explores in a
small population with multiple genetic operators to find the
global optimum solution-spaces. The major difference
between the Micro-Genetic Algorithm (pGA) and Simple-
Genetic Algorithms (SGA) is how to make a reproductive
plan for better searching technique due to the population
choice. Therefore, multiple genetic operators are proposed
for the reproductive plan.

RuGA offers the that the
parameters can gradually adapt to the fitness landscape

advantage continuous
over the entire search space whereas parameter values in
binary implementations are limited to a certain interval and
resolution. RpGA blurs the distinction among genotype and
phenotype, since in many problems the real number vector
already embodies a solution in a natural way. The proposed
algorithm has the robustness of parallel exploration and
with

Moreover, RuGA is a steady-state, elite-preserving, and

asymptotic  convergence real value parameters.
computationally fast algorithm for creating offspring near
parents than anywhere in the search-space. The main
skeleton of the proposed RuGA is illustrated in Fig. 1.
RuGA finds the global optimum solution by maintaining
two types of population as follows: search population and
steering population (Kim et al, 2006). Initial populations,
consisting of five to seven chromosomes, are generated in a

serve as the starting feasible

solution—spaces. The populations, satisfying the engineering

random fashion to

design constraints, serve as a reservoir of information about

the environment and as a basis for generating new trials.
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I I Terminal Condition ?J—ﬁ
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Optimum Results

Fig. 1 Skeleton of the proposed RuGA

The search population, which satisfies linear constraints
of the problem, is a population for searching the
solution—spaces in each generation. A development of the
search population influences evaluations of individuals in
the steering population, satisfying all constraints.

At each generation step, a feasible search-space is
searched by making steering points from the search points.
Some steering points are moved into the population of
search points, where they undergo transformation by
specialized operators. That is, the fitter chromosome is
which inherit the best

characteristics of the parents, for the next generation

selected to produce offspring,

schedule. RuGA terminates the optimization procedure
when a pre-specified number of generations is elapsed.
Then,
substantially fitter than the original.

the result is hopefully a population that is

In the reproductive plan of RuGA, the main challenge is
how to use a pair of decision variable vectors to create a
new pair of offspring vectors or how to perturb a decision
variable vector to a mutated vector in a meaningful manner.
Therefore, multiple operators are adopted for exploration of
new solution-spaces, and more detailed descriptions for
these operators are mentioned in Kim et al. (2005).

4. Grillage structural analysis

Grillage is common types of structures in marine and
land—based that
increases the stiffness of plate used by two rectangular

structural system. Grillage system
stiffeners is a part of deck, side shell and bottom of ships.
The worst loading point of those structures is dependent on

the loads, which are vertical, in-plane or combination of
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those directions as well as boundary conditions.

The worst deflection point is produced when the point load
is examined at central intersection. But the worst loading
point would not necessarily be at the central point. To find
the worst loading point, a traveling point load is applied to
along the vertical and horizontal beamns around mid-spans.

Kim et al. (2004) examined the experimental tests to
confirm the numerical analysis results of the grillage
models obtained from the direct stiffness method. In this
article, the direct stiffness method is also used to calculate
the maximum bending stress of the grillage structure under
elastic analysis. To find the maximum stress in the beam
section, only the bending stress is considered because the
others as shear stress and torsional stress can be
negligible. The numerical results agree to the experimental
tests as well. The main process of direct stiffness method
is illustrated in Fig. 2.

In order to analysis and design of the grillages, the
following hypotheses are assumed to the members of
structure.

(1) Elastic and small deflection behaviour.

(2) At each intersection, members are rigidly connected
with the same level.

(3) Beam is a uniform cross-section along its length in
each direction.

(4) Boundaries are simply-supported.

(5) Equal spacing between each intersections.

(6) The Rules and Regulations of Lloyd's Register of
shipping are adopted for the linear/nonlinear constraints
(Lloyd’s Register of shipping, 2003)

Input Parameters
moment of inertia
nodal point of coordinate
number of nodal point
number of element
boundary condition
load condition

Rearrangement of Matrix
by Boundary Condition

Inverse Matrix

l Calculation of
[ Element Stiffness Matrix ‘ Displaiement

]

l Global Stiffness Matrix

l

Determination of
Boundary Condition
of Each Element

Calculation of
Moment and Force

END

Fig. 2 Main process of direct stiffness method

5. Grillages design for weight minimization

The weight function is mainly determined from the
scantling design variables and the arranging geometric
variables of a structure. The weight of grillages may be

determined by designing to an arbitrary limiting value of
the maximum bending stress, which, in general, may arise
either in the longitudinal or transverse beams. It is assumed
that the material of both beams is identical.

To find the optimum weight of grillages under a given
worst point load, the RuGA is examined by optimizing the
weight function for the parameterization in beam
configuration of grillages. It means that the parameterization
study in optimum beam configuration which was carried out
over the variation of scantlings of beam section for a given
section modulus likely to occur in structures. Fig. 3 shows
the flowchart to find the optimum beam scantlings of
grillages while considering the direct stiffness method to

calculate a maximum bending moment.

5.1 Objective Function and Design Variables

In minimum weight design by using RuGA, the fitness
evaluation involves defining an objective function against
which each chromosome is evaluated for suitability for the
environments under consideration. The objective function
for minimum weight grillages design can be:

F=(H, « T,+2B; « T;)+ p+ (LT » m+LL+n) (1)

where,
H, : Height of web, T,, : Thickness of web,
Bf : Width of flange, Tf . Thickness of flange,

p  Density (7,850kg/m?),
LL : Longitudinal length, LT : Transverse length,
m : Total number of transverse members,

n . Total number of longitudinal members

Optimization Method
(Real-coded Genetic Algorithm)

!

Initial Design Parameters | Determine |-Beam
l Section Scantling

Traveling Load: P
rave Ingl oa Direct Stiffness Analysis

‘ Direct Stiffness AnalysisJ

Find Maximum

l Bending Moment
No Find the Worst Load l
Point (Critical Point) | Satisfy Constraints ? }L

l Yes

Structural Model with ||
Worst Load Point

Yes

No

Minimum Weight ?

I

Optimum Results

Fig. 3 Flowchart for analysis and design of grillage structure
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5.2 Linear/Nonlinear Constraints

In weight minimized grillages design, the most important
procedure has been to convert the required maximum
bending moment values into suitable cross-sectional
dimensions of the beams under the given constraints. The
cross—sectional area due to the number of infinite
combinations of the dimension of the web and flange is a
large component of the total grillages weight. Therefore,
decisions have to be made regarding the geometric
parameters of the beam element to get an optimal
cross—section shape considering the following constraints.
In nonlinear constraint, a safety factor for design condition

1s set at 1.5 and yield stress is 240 MPa for mild steel.

(1) All domains for design variables are float greater than
Zero

H, T, B; T, 0.0
(2) Linear constraints for web and flange buckling

H, I B
7 <500, <15, 7 <I8.0

T,

(3) Nonlinear constraint for design condition

M
Ga gl

where,

aaz—zf“ =ﬁ1’§1 ~160.0 MPa

(o‘a3 Allowable Stress, oy Yield Stress, sf: Safety Factor)

7 BRTAH) ~H/(B~T,)
r 62T +H,)

6. Computational results

In example grillages chosen for the application of analysis
and design, the beams are a constant cross—section as an
Fig. 4
analysis and design of grillage structure. Table 1 shows the

I-section. shows the geometric topologies for
mechanical properties and design data for the example
grillages.

Structural analyses are carried out for 4 types of grillage
models when the load is traveling along the beam span as
shown in Fig. 5~8. For the convenience of analysis the
load span is divided into 10 points with equal intervals. In
these figures, the total stress only considers bending stress
and stresses for the mid-span beam are shown. The stress
distributions are compared with each of models as shown in

Fig. 9. Maximum bending stress occurs at the near

mid—point between intersections on the grillage.

Optimum designs that can be able to obtain more
efficiently as a result of the minimum structural weight. R
£5A had been examined by optimizing the design variables
as sensitivity study in beam configuration of grillages
under a given worst point load during 100,000 independent
trial iterations. The total weights and maximum bending
stresses of any m by n grids calculated by R GA are
shown in Table 2, and the 2 by 2 grids can be selected as
an optimum grillage structure with minimum weight grids.
Table 3 shows the optimum beam scantling by using R g
GA and direct stiffness method.

In order to compare the effectiveness of the proposed R p
GA approach, four more global optimization methods shown
in Table 4 were tested and compared on grillage structure.
All methods are developed with binary representation by
Kim et al (2003).

comparisons of the total weights of the grillage structure

Table 5 shows the performance

with any m by n grids.

Y Y'Y —+

A
| 152.4mm N
VAN AN * o
|—¢76.8mm
. A
A [ 20m
E 6.1mm
o —» |
Pay paN 3
A
v l
VANERYANERYAN
L€ N

1.6m rl

Fig. 4 Geometric topologies of grillage structure
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Table 2 Total weights and maximum bending stresses
_150F 1 Grids | Maximum Bending | Total Weight Weight
g Stress (MPa) (kg) Ratio
% 2x2 1.310x10° 105.385 1
%1 ool p | 3x1 1.527x10° 123175 1.169
) ; 3x3 1.149x10° 144.799 1.374
5 / 5x3 1.019x10° 183.239 1.739
3 Q:"
é 50} b ]
= / Table 3 Optimum beam scantling (unit: mwm)
—e— Transverse Member )
/ -=-* Longitudinal Member Grids Hy T B T
or ¢ , , ] 2x2 214.808 4296 92.062 5115
0 S 10 3x1 226.035 4521 96.876 5.382

Load Point
Fig. 6 Maximum bending stress (3x1 Grids)

3x3 205.584 4112 88.113 4.895
5x3 197.556 3.951 84.674 4704

= 110} 1 Table 4 Global optimization methods for performance
a
% comparison
W
%100 Method Full Name
2 RuGA Real-coded Micro-Genetic Algorithm
T
8 SGA Simple-Genetic Algorithm
% 90r 7 ] uGA Micro-Genetic Algorithm
=
4 SA Simulated Annealing
% Transverse Member uGSA Micro-Genetic Simulated Annealing
80 O/ ~"©-- Longitudinal Member |
0 5 10
Load Point Table 5 Performance comparisons in total weight

Fig. 7 Maximum bending stress (3x3 Grids) - - -
Grids Methods | Total Weight (kg) Ratio
] RuGA 105.385 1
_100| = SGA 111.831 1.061
% ] 2%2 uGA 115.310 1.094
ﬁ SA 107.109 1.016
UE)’ g0l | uwGSA 120.849 1.147
5 8 © 1 RuGA 123175 1
@ ' ' SGA 137,691 1.118
x 4
2 3x1 BGA 134.741 1.094
80} b
£ SA 123623 1004
—e— Transverse Member
G—"'C/ --®-- Longitudinal Member ] ;LGSA 126.198 1.025
0 é 1I0 R/LGA 144799 1
. b“;" Point 5458 Gride) SGA 151.218 1.044
X
Fig. 8 Maximum bending stress (5 rids 33 GA 155878 Lo77
A 153.165 X
Table 1 Mechanical properties and loading condition 5 1058
. 1GSA 148.404 1.025
Variables Values C}om_ments RuGA 183.239 1
LL 16 m Longitudinal length SGA 183,643 L002
LT 20 m Transverse length - -
E 200 GPa Young’s modulus 53 pGA 192,905 1053
G 80 GPa Shear modulus SA 198.202 1.082
P 100 kN Applied load pGSA 220626 1.204
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7. Concluding remarks

A new approach, referred to as Real-coded Micro—
Genetic Algorithm or RiGA, to solve continuous nonlinear
optimization problems is proposed and developed with the
help of multiple genetic operators introduced in this article.
RuGA approach is an abstraction of natural genetics and
theoretical physics and is aimed to search global optimum
solution space in global optimization problems. Therefore,
RuGA can help in avoiding the premature convergence
and search for better global solution, because of its wide
spread applicability, global perspective and inherent
parallelism.

The 2 by 2 grids can be selected as an optimum
grillage structure with minimum weight as shown in
Table 2. From the simulation results of Table 5, it was
shown that the RuGA approach converged to global
optimum solution with a marvellous explorability than the
other optimization methods in application of grillages
structure. Therefore, it is concluded that the proposed Ru
GA 1is both efficient and effective in identifying a global
optimum solution.

Consequently, the Real-coded Micro—Genetic Algorithm
can be suggested as useful tool for solving continuous
and/or discrete nonlinear global optimization problems in
any types of engineering structures.
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Fig. 9 Comparing maximum bending stress distribution
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