• 제목/요약/키워드: Stiffness Effect

검색결과 2,348건 처리시간 0.025초

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

고해 조건과 평량이 라이너 판지의 휨강성에 미치는 영향 (Effect of Refining Conditions and Grammage on the Bending Stiffness of Linerboard)

  • 원종명
    • 펄프종이기술
    • /
    • 제36권3호
    • /
    • pp.44-51
    • /
    • 2004
  • The effect of refining conditions and grammage on the stiffness of linerboard was investigated. The correlations between Taber stiffness and resonance stiffness were very low due to the different measuring principle. The refining conditions did not affect sig nificantly on both Taber and resonance stiffness estimated here. This means that it is strongly recommended to find and apply the refining conditions which can reduce specific energy consumption. Taber stiffness showed very high correlation for the thickness and elastic modulus of linerboard, while the resonance stiffness showed much lower correlation. Effective thicknesses for Taber stiffness were very well fitted with measured thickness, while those for resonance stiffness depended on the grammage of linerboard.

CMP 패드 강성에 따른 산화막 불균일성(WIWNU)에 관한 연구 (A Study on the Within Wafer Non-uniformity of Oxide Film in CMP)

  • 박기현;정재우;박범영;서헌덕;이현섭;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.521-526
    • /
    • 2005
  • Within wafer non-uniformity(WIWNU) improves as the stiffness of pad decrease. We designed the pad groove to study of pad stiffness on WIWNU in Chemical mechanical polishing(CMP) and measured the pad stiffness according to groove width. The groove influences effective pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. An Increase of the apparent contact area of pad by groove width results in decrease of effective pad stiffness. WIWNU and profile of removal tate improved as effective pad stiffness decreased. Because grooving the pad reduce its effective stiffness and it makes slurry distribution to be uniform. Futhermore, it ensures that pad conforms to wafer-scale flatness variability. By grooving the top pad, it is possible to reduce its stiffness and hence reduce WIWNU and edge effect.

고유수용성감각 촉진을 위한 나선형 테이핑 방법이 근육 경도 변화에 미치는 즉각적인 효과 (Immediate Effect of the Proprioceptive Spiral Taping Method on Changes in Muscle Stiffness)

  • 양재만
    • PNF and Movement
    • /
    • 제20권3호
    • /
    • pp.321-329
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the immediate effect on the change in muscle stiffness in the common extensor muscle (CEM) when using the spiral taping method to promote proprioception. Methods: There were 18 participants in this study. CEM stiffness was measured using a MyotonePRO device with the subject in a sitting position and according to the proprioceptive neuromuscular facilitation (PNF) arm pattern. Elastic tape was used as the material for the three taping methods employed in the study: kinesiotaping (KT), right spiral taping (RST), and left spiral taping (LST). The taping methods were applied to the wrist extensor muscle with elongation position. Additionally, when performing PNF arm patterns, spiral taping in diagonal and spiral directions was used to promote CEM proprioceptors. The change in CEM stiffness was compared with the initial data values. Results: The results of this study were obtained by comparing and measuring changes in CEM stiffness using three different tapings. It was found that the stiffness change of the CEM was significant compared to the initial value, and the increase in stiffness of the CEM after RST application was also significant. Conclusion: The results of this study show that by affecting the strength and activation of the extensor muscle, taping performed through the RST method had the most positive effect on the change in CEM stiffness.

탄성적으로 지지된 철근콘크리트 선형판의 유한요소 해석 (Finite Element Analysis of the Reinforced Concrete Circular)

  • 조진구
    • 한국농공학회지
    • /
    • 제35권1호
    • /
    • pp.59-66
    • /
    • 1993
  • Ring Sector Plate Supported by Elastic Beam Although all the reinforced concrete circular ring sector plates are elastically supported, it is conventional to simplify their supporting conditions as fixed or simply-supported ones assuming that their supporting beam has infinite stiffness. However, in order to obtain a precise solution, it should be required to consider the stiffness of their supporting beam. As a methodological improvement to the precise analysis, "Reinforced Concrete Model" previously developed by the author was applied to the structural analysis of the reinforced concrete circular ring sector plates with elastically supported beam. The results of analysis in the cases under various conditions of open angle, steel ratio, relative stiffness(EI/DL) between plate and supporting beam were summarized as follows ; 1.Although the effect of relative stiffness between plate and supporting beam varies depending on the magnitude of open angle, in general, it shows the largest when not more than 5.0 and negligible when not less than 10.0. Therefore, it would be considered as fixed supporting condition :in the case of its open angle of 0$^{\circ}$rectangular plates), its stiffness ratio being not less than 10.0 and in the other case of its open angle of 30$^{\circ}$, its stiffness ratio being not less than 5.0. 2.In the rectangular plates, the effect of steel ratio is considerable in no supporting condition, but neglible in the supporting condition. So, the effect of steel ratio should be negligible in the case of the elastically supported circular ring sector plates. 3.However, the effect of steel ratio is much more considerable in the case of the fixed supported circular plates, especially, when steel ratio being not more than 1.0% and stiffness ratio being smaller. So, the effect of steel ratio should be considered in the analysis of reinforced concreate circular ring sector plates with fixed conditions. 4.The effect of open angle is greater in the case of without-supporting beam conditions. However, in the other case of with-supporting beam conditions, the effect is a little bit when open angle of not more than 300 and negligible when open angle of not more than 30$^{\circ}$.

  • PDF

합성형교의 외측강성 영향 평가 (Evaluation on the Edge Stiffening Affect of Composite Girder Bridge)

  • 성기태;박영훈;이승용
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.179-186
    • /
    • 2008
  • 강성비를 이용한 합성형교 외측강성 영향 평가의 타당성을 평가하기 위하여 동일 강성비에서 거더 간격 변화에 따른 수정계수를 해석적으로 분석하였으며, 강성비, 하중 형태, 거더 간격이 수정계수에 미치는 영향을 평가하였다. 현장재하시험 및 기존 설계법의 수정계수와 본 연구에서 분석된 수정계수를 비교한 결과 강성비를 이용한 외측강성 영향 평가가 가능한 것으로 판단된다.

A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect

  • Jing Bian;Xuhong Zhou;Ke Ke;Michael C.H. Yam;Yuhang Wang;Zi Gu;Miaojun Sun
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.213-227
    • /
    • 2023
  • A passive prismatic-shaped isolation platform (PIP) is proposed to realize enhanced quasi-zero stiffness (QZS) effect. The design concept uses a horizontal spring to produce a tunable negative stiffness and installs oblique springs inside the cells of the prismatic structure to provide a tunable positive stiffness. Therefore, the QZS effect can be achieved by combining the negative stiffness and the positive stiffness. To this aim, firstly, the mathematical modeling and the static analysis are conducted to demonstrate this idea and provide the design basis. Further, with the parametric study and the optimal design of the PIP, the enhanced QZS effect is achieved with widened QZS range and stable property. Moreover, the dynamic analysis is conducted to investigate the vibration isolation performance of the proposed PIP. The analysis results show that the widened QZS property can be achieved with the optimal designed structural parameters, and the proposed PIP has an excellent vibration isolation performance in the ultra-low frequency due to the enlarged QZS range. Compared with the traditional QZS isolator, the PIP shows better performance with a broader isolation frequency range and stable property under the large excitation amplitude.

패드 그루브의 치수가 CMP 연마특성에 미치는 영향 (The Effects of Groove Dimensions of Pad on CMP Characteristics)

  • 박기현;김형재;최재영;서헌덕;정해도
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.432-438
    • /
    • 2005
  • CMP characteristics such as material removal rate and edge effect were measured and investigated in accordance with pad grooving effect, groove width, depth and pitch. GSQ (Groove Stiffness Quotient) and GFQ (Groove Flow Quotient) were proposed to estimate pad grooving characteristics. GSQ is defined as groove depth(D) divided by pad thickness(T) and GFQ is defined as groove width(W) divided by groove pitch(P). As GFQ value increased, material removal rate increased some point but gradually saturated. It seems that material removal rate is not affected by each parameter respectively but by interaction of these parameters such as groove dimensions. In addition, an increase in GFQ and GSQ causes edge effect to be improved. Because, pad stiffness decreases as GSQ and GFQ increase. In conclusion, groove influences relative pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. The change of groove dimensions has influence on pad stiffness and slurry flow, so that polishing results such as removal rate and edge effect become changed.

Effect of cable stiffness on a cable-stayed bridge

  • Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.27-38
    • /
    • 1999
  • Cables are used in many applications such as cable-stayed bridges, suspension bridges, transmission lines, telephone lines, etc. Generally, the linear relationship is inadequate to present the behavior of cable structure. In finite element analysis, cables have always been modeled as truss elements. For these types of model, the nonlinear behavior of cables has been always ignored. In order to investigate the importance of the nonlinear effect on the structural system, the effect of cable stiffness has been studied. The nonlinear behavior of cable is due to its sag. Therefore, the cable pretension provides a large portion of the inherent stiffness. Since a cable-stayed bridge has numerous degrees of freedom, analytical methods at present are not convenient to solve this type of structures but numerical methods may be feasible. It is necessary to provide a different and more representative analytical model in order to present the effect of cable stiffness on cable-stayed bridges in numerical analysis. The characteristics of cable deformation have also been well addressed. A formulation of modified modulus of elasticity has been proposed using a numerical parametric study. In order to investigate realistic bridges, a cable-stayed bridge having the geometry similar to that of Quincy Bayview Bridge is considered. The numerical results indicate that the characteristics of the cable stiffness are strongly nonlinear. It also significantly affects the structural behaviors of cable-stayed bridge systems.