• Title/Summary/Keyword: Static Induction Transistor

Search Result 16, Processing Time 0.028 seconds

New Fabrication Process of Vertical-Type Organic TFTs for High-Current Drivers

  • Kudo, Kazuhiro;Nakamura, Masakazu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.307-309
    • /
    • 2009
  • We have fabricated vertical-type organic transistors (static induction transistors; SITs) with built-in nano-triode arrays formed in parallel by a colloidal-lithography technique. Using this technique, we could fabricate a microstructure in a lateral direction within a large-scale organic device without relying on photolithography. The organic transistor showed low operating voltages, high current output, and large transconductance.

  • PDF

A Review of SiC Static Induction Transistor (SIT) Development for High-Frequency Power Amplifiers

  • Sung, Y.M.;Casady, J.B.;Dufrene, J.B.
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.99-106
    • /
    • 2001
  • An overview of Silicon Carbide (SiC) Static Induction Transistor (SIT) development is presented. Basic conduction mechanisms are introduced and discussed, including ohmic, exponential, and space charge limited conduction (SCLC) mechanisms. Additionally, the impact of velocity saturation and temperature effects on SCLC are reviewed. The small-signal model, breakdown voltage, power density, and different gate structures are also discussed, before a final review of published SiC SIT results. Published S-band (3-4 GHz) results include 9.5 dB of gain and output power of 120 W, and L-band (1.3 GHz) results include 400 W output power, 7.7 dB of gain, and power density of 16.7 W/cm.

  • PDF

Study on Modeling of GaN Power FET (GaN Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk;Kim, Beum-Jun;Lee, Young-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.51-51
    • /
    • 2009
  • In this paper, we proposed GaN trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, GaN and SiC power devices is next generation power semiconductor devices. We carried out modeling of GaN SIT with 2-D device and process simulator. As a result of modeling, we obtained 340V breakdown voltage. The channel thickness was 3um and the channel doping concentration is 1e17cm-3. And we carried out thermal characteristics, too.

  • PDF

Study on Modeling of GaN Power FET (GaN Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk;Kim, Beum-Jun;Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1018-1022
    • /
    • 2009
  • In this paper, we proposed GaN trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, GaN and SiC power devices is next generation power semiconductor devices. We carried out modeling of GaN SIT with 2-D device and process simulator. As a result of modeling, we obtained 340 V breakdown voltage. The channel thickness was 3 urn and the channel doping concentration is $1e17\;cm^{-3}$. And we carried out thermal characteristics, too.

Structure Effects on Organic Thin-Film Transistor Properties of Dinaphthyl Substituted Pentacene Derivatives

  • Son, Ji-Hee;Kang, In-Nam;Oh, Se-Young;Park, Jong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.995-998
    • /
    • 2007
  • Pentacene moiety has been widely studied in Organic Thin-Film Transistor (OTFT) device as a channel layer because of high carrier mobility. In this study, we have fabricated vertical type Organic Static Induction Transistors (SITs) using pentacene, 6,13-Dinaphthalen-1-ly-Pentacene (1-DNP, 3), and 6,13-Dinaphthalen-2- ly-Pentacene (2-DNP, 4). 1-DNP and 2-DNP have same naphtyl group with pentacene, but different linked position and spatial arrangement. We have checked the static characteristics of materials in vertical type SITs device. We found that pentacene has as on/off ratio of 14.56, 1-DNP and 2-DNP shows as on/off ratio of 36.58 and 6.61 at VDS = 2V in SIT, respectively.

A Study on the Electrical Characteristics with Design Parameters in GaN Power Static Induction Transistor (GaN Power SIT의 설계변수에 따른 전기적 특성변화에 관한 연구)

  • Oh, Ju-Hyun;Yang, Sung-Min;Jung, Eun-Sik;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.671-675
    • /
    • 2010
  • Gallium nitride (GaN), wide bandgap semiconductor, has attracted much attention because they are projected to have much better performance than silicon. In this paper, effects of design parameters change of GaN power static induction transistor (SIT) on the electrical characteristics (breakdown voltage, on resistance) were analyzed by computer simulation. According to the analyzed results, the optimization was performed to get power GaN SIT that has 600 V class breakdown voltage. As a result, we could get optimized 600 V class power GaN SIT that has higher breakdown voltage and lower On resistance with a thin (a several micro-meters) thickness of the channel layer.

A Study on the Electrical Characteristics in the Static Induction Transistor with Trench Oxide (트렌치 산화막을 갖는 정전유도트랜지스터의 전기적 특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Je-Yoon;Hong, Seung-Woo;Sung, ManYoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • In this paper, two types of vertical SIT(Static Induction Transistor) structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. First, a trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. Second, a trench gate-source region power SIT device is proposed to obtain more higher forward blocking voltage and forward blocking characteristics at the same size. The two proposed devices have superior electrical characteristics when compared to conventional device. In the proposed trench gate oxide power SIT, the forward blocking voltage is considerably improved by using the vertical trench oxide and the forward blocking voltage is 1.5 times better than that of the conventional vertical power SIT. In the proposed trench gate-source oxide power SIT, it has considerable improvement in forward blocking characteristics which shows 1500V forward blocking voltage at -10V of the gate voltage. Consequently, the proposed trench oxide power SIT has the superior stability and electrical characteristics than the conventional power SIT.

Study on Modeling of ZnO Power FET (ZnO Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.277-282
    • /
    • 2010
  • In this paper, we proposed ZnO trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, ZnO and SiC power devices is next generation power semiconductor devices. We carried out modeling of ZnO SIT with 2-D device and process simulator. As a result of modeling, we obtained 340V breakdown voltage. The channel thickness was 3um and the channel doping concentration is 1e17cm-3. And we carried out thermal characteristics, too.

A New Drive Technology of Power Transistor Family Devices for Speed-up of the Output Frequency (출력주파수의 고주파화를 위한 전력용 Transistor Family의 구동기술)

  • Yoo, Dong-Wook;Kim, Dong-Hee;Kweon, Soon-Man;Byun, Young-Bok;Bae, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.539-542
    • /
    • 1987
  • This paper presents driving circuits technology to enable high speed drive of MOSFET, IGBT(Insulated Gate Bipolar Transistor) and SIT(Static Induction Transistor). In addition to, it demonstrates application circuits(high frequency resonant type inverters, ultrasonic power supply etc.) using the, developing drive circuits.

  • PDF

A Solid State Controller for Self-Excited Induction Generator for Voltage Regulation, Harmonic Compensation and Load Balancing

  • Singh Bhim;Murthy S. S.;Gupta Sushma
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.109-119
    • /
    • 2005
  • This paper deals with the performance analysis of static compensator (STATCOM) based voltage regulator for self­excited induction generators (SEIGs) supplying balanced/unbalanced and linear/ non-linear loads. In practice, most of the loads are linear. But the presence of non-linear loads in some applications injects harmonics into the generating system. Because an SEIG is a weak isolated system, these harmonics have a great effect on its performance. Additionally, SEIG's offer poor voltage regulation and require an adjustable reactive power source to maintain a constant terminal voltage under a varying load. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC- VSI) known as STATCOM is used for harmonic elimination. It also provides the required reactive power an SEIG needs to maintain a constant terminal voltage under varying loads. A dynamic model of an SEIG-STATCOM system with the ability to simulate varying loads has been developed using a stationary d-q axes reference frame. This enables us to predict the behavior of the system under transient conditions. The simulated results show that by using a STATCOM based voltage regulator the SEIG terminal voltage can be maintained constant and free from harmonics under linear/non linear and balanced/unbalanced loads.