• Title/Summary/Keyword: Standard Flow

Search Result 2,040, Processing Time 0.037 seconds

STANDARD FRACTIONAL VECTOR CROSS PRODUCT IN EUCLIDEAN 3-SPACE

  • MANISHA M. KANKAREJ;JAI P. SINGH
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.5
    • /
    • pp.1007-1023
    • /
    • 2024
  • In this paper we are able to define a standard fractional vector cross product(SFVCP) of two vectors in a Euclidean 3-space where it satisfies all the conditions of geometrical reality. For γ = 1 this definition satisfies the conditions of standard vector cross product(SVCP). The formulae for euclidean norm and fractional triple vector cross product of two vectors with standard fractional vector cross product are presented. Fractional curl and divergence of an electromagnetic vector field are presented using the new definition. All the properties are further supported with particular cases at γ = 0, γ = 1 and examples on standard orthogonal basis in R3. This concept has application in electrodynamics, elastodynamics, fluid flow etc.

An Evaluation of the Accuracy of Mini-Wright Peak Flow Meter (mini-Wright Peak Flow Meter에 의한 PEFR 측정의 정확도)

  • Koh, Young-Il;Choi, In-Seon;Na, Hyun-Ju;Park, Seok-Chae;Jang, An-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.298-308
    • /
    • 1997
  • Background : Portable devices for measuring peak expiratory flow(PEF) are now of proved value in the diagnosis and management of asthma and many lightweight PEF meters have become available. However, it is necessary to determine whether peak expiratory flow rate(PEFR) measurements measured with peak flowmeters is accurate and reproducible for clinical application. The aim of the present study is to define accuracy, agreement, and precision of mini-Wright peak flow meter(MPFM) against standard pneumotachygraph. Methods : The lung function tests by standard pneumotachygraph and PEFR measurement by MPFM were performed in a random order for 2 hours in 22 normal and 17 asthmatic subjects and also were performed for 3 successive days in 22 normals. Results : The PEFR measured with MPFM was significantly related to the PEFR and $FEV_1$ measured with standard pneumotachygraph in normal and asthmatics(for PEFR, r = 0.92 ; p < 0.001 ; for $FEV_1$, r = 0.78 ; p < 0.001). The accuracy of MPFM was within 100(limits of accuracy recommeded by NAEP) in all the subjects or 22 normal, mean difference from standard pneumotachygraph being 16.5L/min(percentage of difference being 2.90%) or 10.6L/min(percentage of difference being 1.75%), respectively. According to the method proposed by Bland and Altman, the 95% limits of the distribution of differences between MPFM and standard pneumotachygraph after correction of PEFR using our regression equation were +38.2 and -71.5L/min in all the subjects or 20.49~+9.49L/min in 22 normal and was similar to the intraindividual agreements for 3 successive days in normal. There was no statistically significant difference of PEFR measured with MPFM and standard pneumotachygraph among three days(p > 0.05) and the coefficient of variation($2.4{\pm}1.2%$) of PEFR measured with MPFM was significantly lower than that($5.2{\pm}3.5%$) with standard pneumotachygraph in normal (p < 0.05). Conclusion : This results suggest that the MPFM was as accurate and reproducible as standard pneumotachygraph for monitoring of PEFR in the asthmatic subjects.

  • PDF

Effect of Swirl Flow Disturbance on Uncertainty of Flow Rate Measurement by Venturi (선회유동 교란에 따른 벤투리 유량측정의 불확실성 해석)

  • Lee, Jung-Ho;Yoon, Seok-Ho;Yu, Cheong-Hwan;Park, Sang-Jin;Chung, Chang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.18-25
    • /
    • 2009
  • Venturi has long been an attractive method of measuring flow rate in a variety of engineering applications since pressure loss is relatively small compared with other measuring methods. The current study focuses on making detailed uncertainty estimations as the upstream flow disturbance affects uncertainty levels of the flow rate measurement. Upstream flow disturbance can be determined by 9 different swirl generators. Measurement uncertainty of flow rate has been estimated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard. The results of flow rate uncertainty analysis show that the case with systematic error has higher than that without systematic error. Especially the result with systematic error exhibits that the uncertainty of flow rate was gradually increased by swirl flow disturbance. The uncertainty of flow rate measurement can be mainly affected by differential pressure and discharge coefficient. Flow disturbance can be also reduced by increasing of the upstream straight length of Venturi.

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.

Flow Path Design of Large Steam Turbines Using An Automatic Optimization Strategy (최적화 기법을 이용한 대형 증기터빈 유로설계)

  • Im, H.S.;Kim, Y.S.;Cho, S.H.;Kwon, G.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.771-776
    • /
    • 2001
  • By matching a well established fast throughflow code, with standard loss correlations, and an efficient optimization algorithm, a new design system has been developed, which optimizes inlet and exit flow-field parameters for each blade row of a multistage axial flow turbine. The compressible steady state inviscid throughflow code based on streamline curvature method is suitable for fast and accurate flow calculation and performance prediction of a multistage axial flow turbine. A general purpose hybrid constrained optimization package, iSIGHT has been used, which includes the following modules: genetic algorithm, simulated annealing, modified method of feasible directions. The design system has been demonstrated using an example of a 5-stage low pressure steam turbine for 800MW thermal power plant previously designed by HANJUNG. The comparison of computed performance of initial and optimized design shows significant improvement in the turbine efficiency.

  • PDF

Development of a Flow Rate Sensor Using 2-way Cartridge Valve (2-유로 카트리지 밸브를 이용한 유압용 유량 센서의 개발)

  • 홍예선;이정오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2381-2389
    • /
    • 1993
  • In this paper the design and test results of a dynamic flow rate sensor was reported. This sensor comprises an 2-way cartridge valve as standard hydraulic component and a displacement sensor. Its working principle bases on the linear relationship between the flow rate and the piston displacement of 2-way cartridge valves under constant pressure drop. This principle is well known, however it is not easy to develop a flow rate sensor with the measurement range of 300 1/min, pressure loss of less than 8 bar at 300 1/min, maximum linearity error of less than $\pm$1% and the maximum rising time of 10 ms. This paper describes the design procedure of the flow rate sensor, the improvement procedure of static performance and test method and results of dynamic performance.

Diagnostic Value of Flow Cytometric DNA Analysis in the Evaluation of Effusions (체강삼출액의 진단에 있어서 유세포분석에 의한 DNA 함량 측정의 유용성)

  • Lee, Ji-Shin;Juhang, Sang-Woo
    • The Korean Journal of Cytopathology
    • /
    • v.8 no.1
    • /
    • pp.20-26
    • /
    • 1997
  • The specificity of cytologic examination in effusions is high but the sensitivity is low. Therefore, various ancillary methods for the detection of malignant cells in effusions have been proposed. The presence of an aneuploid cell population is generally considered diagnostic of malignancy. The purpose of this study is to determine whether the routine use of flow cytometry adds to standard cytologic evaluation in effusions. We did flow cytometric DNA analysis in 76 effusions(28 malignant and 48 benign fluids). All the 48 benign effusions were diploid. There were 12(42.9%) aneuploid and 16(67.1%) diploid malignant effusions. Based on these results flow cytometric DNA analysis had a sensitivity of 42.9% and a specificity of 100%. These results suggest that flow cytometric DNA analysis may be a useful adjunct to conventional cytology, but its principal limitation is us relatively low sensitivity.

  • PDF

Numerical Study of Three-dimensional Flow Through a Turbine Flow Meter (터빈유량계의 3차원 유동에 관한 수치적 연구)

  • Kim, J.B.;Ko S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.44-50
    • /
    • 2003
  • Flow through a turbine flow meter is simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames, and the centrifugal force and the Coriolis force are added to the equation of motion. The standard $k-{\epsilon}$model is employed to evaluate turbulent viscosity. Computational results yield quantitative as well as qualitative information on the design of turbine flow meters by showing the distributions of pressure and velocity around the turbine blades.

LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL

  • MALLIK, MUHAMMAD SAIFUL ISLAM;UDDIN, MD. ASHRAF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge-Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, $Re_{\tau}=590$ based on the channel half width, ${\delta}$ and wall shear velocity, $u_{\tau}$. To reduce the calculation cost of LES, algebraic wall model (AWM) is applied to approximate the near-wall region. The computation is performed in a domain of $2{\pi}{\delta}{\times}2{\delta}{\times}{\pi}{\delta}$ with $32{\times}20{\times}32$ grid points. Standard Smagorinsky model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field are computed and compared with Direct Numerical Simulation (DNS) data and LES data using no wall model. Agreements as well as discrepancies are discussed. The flow structures in the computed flow field have also been discussed and compared with LES data using no wall model.

A Numerical Study on the Design of Exchanger for Desiccant Dehumidifier (데시칸트 제습기용 열교환기 설계에 관한 수치해석적 연구)

  • Kim, Chi-Wan;Ahn, Young-Chull;Kim, Gil-Tae
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.54-62
    • /
    • 2013
  • A numerical analysis is performed to evaluate mass flow balance in the heat exchanger for the dehumidifier. To improve the mass flow balance for maximum heat transfer performance, inlet, outlet and baffle are changed. Mass flow balance is evaluated by non-uniformity of flow which is the same concept with the standard deviation. Usually, there will occur many paths between the inlet and the outlet, however, it will follow shortest and low resistance ways. The uniform distribution of flow is numerically analyzed for several types of heat exchangers. Making the shortest way between the inlet and the outlet is most important factor. Two types of heat exchangers are installed in the dehumidifier and 4 cases of Type A heat exchangers and 3 cases of Type B heat exchangers are evaluated and optimized. The result of this research is applied to design heat exchanger for commercial dehumidifiers.