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Abstract 
Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely 
important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both 
the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow 
estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a 
vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume 
flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail 
information on the local velocity distribution. In this method, an accurate double iterative flow velocity 
estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from 
carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities 
when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental 
setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the 
mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of 
using the RMG algorithm for real-time blood volume flow estimation possible. 
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1. Introduction 

According to the World Health Organization research data, it shows that one of the three major 
diseases that threaten human life and health is cardiovascular and cerebrovascular disease [1,2]. In the 
diagnosis of cardiovascular disease, blood volume flow is a very important health indicator [3]. It is 
natural that the measurement of volume flow is beneficial to the heart, carotid, renal and visceral 
circulation, as well as to the aorta and cardiac circulation [4-6]. It is an important method to diagnose the 
various diseases with the ultrasonic Doppler spectrums to detect the blood volume flow of the related 
vessels [7,8]. Therefore, the ability to accurately and quickly monitor blood volume flow is very essential 
for clinicians [9], which in clinical diagnosis is of great significance [10]. 

The general method for estimating blood volume flow using ultrasound is calculating the integral of 
the measured spatial mean velocity within the vessel cross-sectional area [11-13]. Boote [14] proposed a 
method estimating volume flow based on a single gate, he estimated mean velocity from the maximum 
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velocity (MXV). Figueras et al. [15] estimated volume flow by single gate Doppler measurements as well. 
In contrast to Boote [14], Figueras et al. [15] calculated the mean velocity of blood volume flow from the 
intensity-weighted mean velocity (IWMV) method. Some good experimental results were obtained from 
their research. Based on the single gate, the narrower the sampling gate, the lower the signal-to-noise 
ratio (SNR), but the higher the velocity resolution. Correspondingly, the wider the sampling gate, the 
higher the SNR, the lower the resolution. However, these algorithms based on a single gate do not provide 
information on the local velocity distribution in the flow cross-section. 

This paper proposes a robust ultrasound blood volume flow estimation based on multigate (RMG). 
The vessel is divided into a plurality of sub-sampling gates. The blood flow velocity in each sub-sampling 
gate can be accurately estimated as well as the blood volume flow. Therefore, the blood volume flow in 
each sub-sampling gate can be accumulated to obtain the entire blood volume flow. The multigate 
method can obtain different blood flow velocities in different location, which provides detail information 
on the local velocity distribution. When the blood flows in the blood vessel, the blood near the tube wall 
is affected by viscous friction, the SNR is low so the mean velocity estimation is affected and can may be 
not obtained accurately. In order to overcome the inaccuracy of velocity, a double iterative algorithm for 
estimating the mean velocity (DIV) is proposed. The first iteration eliminates the meaningless noise and 
obtains the accurate signal region. In the obtained signal region, the second iteration integral is made to 
obtain more accurate estimation of the blood flow velocity. In low SNR conditions, the mean velocity can 
be estimated accurately using DIV algorithm. In the paper, the RMG method is validated in Doppler 
phantom and imitation blood flow control system and experimental results are also given. The steadiness 
in mean velocity estimation for different SNR levels suggests that the DIV algorithm is robust and with 
low sensitivity to SNR. Through in vitro and in vivo experiments, it can be proved that RMG algorithm 
has better robustness compared with the existing algorithms, which has important value and significance 
in clinical diagnostic. 

This paper is organized as follows. In Section 2, a detailed description of the algorithm for double 
iterative flow velocity estimation and multigate blood volume flow estimation is given. Section 3 
presents the experimental results and comparisons with the two existing algorithms. Finally, conclusions 
are drawn in Section 4. 

 
 

2. Algorithm Description 

2.1 Multigate Blood Volume Flow Estimation 
 

In this paper, a robust ultrasound blood volume flow estimation method based on multigate (RMG) is 
proposed. Multigate technology divides the whole sampling gate into multiple sub-sampling gates. The 
signal data in each sub-sampling gate is processed respectively. The multigate method can obtain accurate 
blood flow velocities in each location and provide detail information on the local velocity distribution. 
Then on the basis of the integral of the vessel cross-sectional area and velocity, the whole volume flow 
estimation can be obtained accurately. 

Assuming that the blood vessel is a circular cross section, as shown in Fig. 1, the entire vessel is divided 
into even number of sub-sampling gates. The number of gates is N+N' equal to the number of Doppler 
gates and each sub gate has a size of		 . The signal data in each sampling gate is processed separately and 
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the volume flow at each sampling gate can be estimated. 
The blood volume flow ( ) at a certain time  through the vessel cross-section is defined as: 
 ( ) = ∗ ( , )                                                            (1) 

 

                  
(a) (b) 

Fig. 1. (a) The vessel diameter is divided to N+N' number of sub-sampling gates equal to the number of 
Doppler gates and each gate has a size of		 . (b) Schematic diagram, assuming that the vessel geometry 
looks like a circular pipe with a radius of R. 

 
where R is the radius of blood vessel cross-section and ( , ) is the mean velocity at time  when radius 
is . 

The discrete form of Eq. (1) at time  will be 
 = 2 ∑ ( − 0.5) ( )                                                      (2) 
 

where 	is the sub gate size,  is the gate index, =1,2,…,  and 	is the velocity estimated in each 
sampling gate. In Eq. (2) we assume the velocity pattern is symmetric to the vessel diameter and we only 
count the gate from 1 to N. 

In reality, the velocity pattern is asymmetric to the vessel diameter and the vessel diameter is divided 
to N+N' number of sub gates equal to the number of Doppler gates, as shown in Fig. 1. We can calculate 
the blood volume flow along the whole vessel diameter, therefore, at time  , the above equation can be 
written as 

 = ∑ ( − 0.5) ( ) + ∑ ( ′ − 0.5) ( )                          (3) 
 

where =1,2,…,  and	 ′=1,2,…, N'. 
The volume flow estimation by Eq. (3) is just in consideration that the whole sampling gate is divided 

into even number of sub-sampling gates. Similarly when there are odd number of sub sampling gates 
N+N'+1, the flow can be estimated as: 

 = ( ) + ∑ ( ) + ∑ ′ ( )                             (4) 
 

Because the ultrasonic scanning beam is not perpendicular to the flow direction, as shown in Fig. 2, so 
the actual volume flow is a component of estimated volume flow		 ( )	. The volume flow from Eqs. (3) 
and (4) should be corrected by a factor of		 ( ), so the actual volume flow ( )	is: 
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( ) = ( ) ∗ ( )                                                                  (5)  
 

where  defines the angle between the ultrasound beam and the flow direction. 
 

 
Fig. 2. The geometry of the ultrasound scanning beam and flow direction. 

 
The heart rate is known to be		 ,  represents the end moment of the last cardiac diastolic, and 	 

represents the end moment of this cardiac diastolic, then the blood volume flow per minute  can be 
estimated as: 

 = ∗ ∑ ( )	                                                                (6) 
 

The details of multigate blood volume flow estimation algorithm are given by Algorithm 1. 
 

Algorithm 1. Multigate blood volume flow estimation algorithm 
Input: The number of sub gates _ , the sub gate size , the time T, velocity estimated in each 
sampling gate	 ( ), the angle between the ultrasound beam and the flow direction  and the heart rate		 . 
Output: The blood volume flow per minute	 . 
if _ /2	 = 	0 then ← _ /2	  		 ← _ /2  

for	 = 1,2, … ,  do 
    						 ( ) ← ∑ ( − 0.5) ( ) + ∑ ( ′ − 0.5) ( ) 
    end for 
else 	 ← ( _ − 1)/2	  		 ← ( _ − 1)/2  

for = 1,2,… ,  do 
    						 ( ) ← /4 ( ) + ∑ ( ) + ∑ ′ ( ) 
    end for 
end if ( ) ← ( ) ∗ ( ) 	←	 ∗ ∑ ( )    

 
2.2 Double Iterative Flow Velocity Estimation (DIV) 
 

The algorithm proposed for mean velocity estimation is based on the spectral upper and below profile. 
First find the upper and below profile of the spectral profile image, and then integrate from the upper 
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profile to the below profile. In this paper, a double iterative profile detection algorithm based on energy 
accumulation function is proposed. 

Defining ( ) as an input signal, thus the energy accumulation function ( )	is defined as follows: 
 ( ) = ∑ ( ), = 1,2, … ,                                                            (7) 
 

where N is the signal length. 
The slope of the connecting line between the front and rear of ( ) can be calculated as: 
 

                                ( ) ( ) = ∑ ( ) ( ) ≈ ∑ ( ) = ̅                                                    (8) 
 

where N is the signal length, (1)	and	 ( ) are the front and rear of ( ), respectively, ( ) is the input 
signal, and ̅ is the mean of signal ( ). 

Through simple calculation, it can be known that the slope of the connecting line is similar to the mean ̅ of signal		 ( ). Because of the existence of the signal peaks, there must be an evolution process of ( )	from less than ̅ to more than		 ̅. And in this process, there are three important parameters to be 
noticed: the negative maximum distance from the connecting line, the positive maximum distance from 
the connecting line, and the intersecting position.  

To get the above three important parameters, Lagrange mean value theorem [16,17] is introduced, that 
if a function ( ) is continuous on the closed interval [A, B], and is differentiable on the open interval 
(A, B), therefore there is at least a point ξ on (A, B) to satisfy the following theorem: 

 ( ) = ( ) ( )                                                                          (9) 
 

In fact, the point of tangency is also the farthest point from the line AB on the curve	 ( ), namely the 
point of the positive maximum distance or the negative maximum distance. The energy accumulation 
curve	 ( ) satisfies the hypothesis of Lagrange mean value theorem and also in certain SNR conditions, 
there must be the point of negative maximum distance	 , the point of positive maximum distance 

, and the intersecting point	 . 

Rotating the coordinate system of		 ( ), the rotation angle is defined as	 = 	( ( ) ( )), thus 
under the new coordinate system, the energy accumulation curve ( ) is: 

 

        	 ( ) = ( ) ∗ ( ) − ∗ ( ) , = 1,2, … ,                                    (10) 
 

Thus we obtain 
 ( ) ≤ ( ) 

 ( ) ∗ ( ) − ∗ ( ) ≤ ( ) ∗ ( ) − ∗ ( ) 
 

    ( − ) ∗ ( ) ≤ ( ) − ( ) ∗ 	( )                                (11) 
 

Since ( ) is a monotonic increasing function and	 ∈ (0, /2), by controlling the order of traversing ( ), it can meet the requirement of		 ≥ 	 	 ( ) ≥ ( ) . Therefore, the above complex 
trigonometric functions can be simplified as follows: 
 ( ) ( ) ≥ 	( )	( ) = ( ) = ( ) ( )                                            (12) 
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Similarly, the solution formula of  and  can be derived:  
 

                  ( ) ( ) ≤ ( ) ( )                                                                  (13) 
 

         ( ) ≤ ( ) ( ) 	&&	 ( ) > ( ) ( )                                          (14) 
 ( ) ( ) is a constant and there is no need to repeat calculating it. The above-mentioned method can 

avoid the calculation of trigonometric functions brought by coordinate rotation, and it is very meaningful 
to reduce the computational complexity. Not only that, there is the characteristics of		 ≤ ≤

, so in real operations, the above three unknown parameters can be got by traversing ( ) only once. 
In other words,  and   are the upper profile and the below profile. 

The above process is simply referred to as one iterative algorithm. Because the computational 
complexity is only	 (2 ), it is very suitable for real-time systems. 

In order to further improve the performance of the algorithm to obtain the details of the profile, this 
paper designs a double iterative profile detection algorithm. After obtaining the result of one iterative 
algorithm, we will truncate the	 ( ) , and then the truncated signal ( ) can be obtained: 
 

       ( ) = ( ), = − ℎ ,… , + ℎ                                     (15) 
 

where ℎ  is a constant value of experience. In the strong physical meaning condition (such as blood 
flow velocity limit), ℎ  can be a relatively small value, then one more iteration can obtain more 
accurate value. On the contrary, in the less physical meaning condition, it requires multiple iterations to 
find the optimal solution of		 ℎ . By truncating the signal	 ( ), the meaningless signal is eliminated, 
which can improve the SNR of the signal	 ( ). The truncated signal ( ) performs the same processing 
as one iterative algorithm, and further obtains the local optimal solution, thus improves the detailed 
resolution of the profile. 

Generally, intensity-weighted integral is used to calculate mean velocity. Thus the mean velocity ( )	of the kth gate at time  could be given by 
 ( ) = ∑ ( )∗ ( )∑ ( )                                                                   (16) 
 

where ( ) is Doppler power spectrum of the kth gate at time , and ( ) is the velocity of the kth gate.  
However, intensity-weighted integral is a global algorithm and can ignore local details. To overcome 

the inaccuracy, this paper proposes an accurate flow velocity estimation algorithm based on the double 
iterative profile detection. The double iterative algorithm changes the range from the global to the local,   
and eliminates the unnecessary information that interferes with the signal, so the accuracy will increase. 
In the estimation of mean velocity, the calculation range is calculated from the upper profile position to 
the below profile position. 

Thus the mean velocity ( )	of the kth gate at time  could be given by 
 

          ( ) = ∑ ( )∗ ( )( )( )∑ ( )( )( )                                                       (17) 

 

where ( ) is Doppler power spectrum of the kth gate at time , 	 ( ) and ( ) are the upper 
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profile position and the below profile position at time , respectively, and ( ) is the velocity of the kth 
gate. 

 

 
Fig. 3. The velocity pattern ( )	at time	 . 

 
As shown in Fig. 3, the power spectrum within the upper and the below profile in each sampling gate 

will be used to calculate the mean velocity of Eq. (17). 
The details of double iterative flow velocity estimation algorithm are given by Algorithm 2. 
 

Algorithm 2. Double iterative flow velocity estimation algorithm 
Input: An input signal ( ), the signal length , the time T, and the number of sub-

gates	 _ .   

Output: The mean velocity ( )	of the kth gate at time t. 

for = 1,2, … ,  do 							 ( ) ← ∑ ( )   
end for  

 ← ( ) ( ) 
for = 2,3, … , − 1 do 

if  ( ) ≤ 		and	 ( ) >  then 												 ←  
end if 

end for 	 ← − ℎ  	 ← + ℎ  

 _ ← ( ) ( ) 	 ←  	 ←  
for = ,… ,  do 

      _ 	( ) ← ( ) ( )			  

      _ 	( ) ← ( ) ( ) 
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if 	 _ ( ) ≥ _  then 												 ←  
end if 

if 	 _ ( ) ≤ _  then 												 ←  
end if 

end for 

for = 1,2, … ,  do 

for = 1,2, … , _  do 

 						 ( ) ← ∑ ( )∗ ( )( )( )∑ ( )( )( )  

end for 

end for 

 
 

3. Experimental Results 

The proposed DIV algorithm is compared with the two existing algorithms, IWMV and MXV. The 
three algorithms for mean velocity estimation are tested in vivo recordings. And also, flow simulations 
are performed and the algorithms are tested on them. In this section, the accuracy of mean velocity 
estimation is evaluated and the robustness of the proposed algorithm is presented. 

The volume flow estimation based on the IWMV and MXV of single gate is presented, referred as 
intensity-weighted mean flow (IWMF) and maximum flow (MXF). MXF is defined as maximum flow. In 
the proposed RMG algorithm, the blood vessel is split into 10 sub-sampling gates. According to the 
double iterative velocity estimation formula, the mean velocity of the 10 sampling gates can be calculated 
respectively, as well as the volume flow. Then the volume flow of 10 sampling gates can be accumulated 
to get the whole vessel volume flow. 

The in vitro tests have been carried out through the experimental set-up, KS205D-1 type Doppler 
phantom and imitation blood flow control system developed by the Institute of Acoustics, Chinese 
Academy of Sciences. This set-up can measure the blood volume flow. With this set-up, the performance 
of the algorithms can be verified. 

The measurements performed with the same pump setting were compared for different methods. The 
error is the ratio between the absolute error caused by the measurement and the actual value of the volume 
flow. As shown in Table 1, under different flow settings, estimated volume flow values and mean errors 
by the RMG method and the two comparison methods (IWMF and MXF) are presented. 

As shown in Table 1, at different flow rates, the error of the proposed RMG algorithm is significantly 
lower than the MXF and IWMF. The RMG algorithm can more accurately measure the volume flow 
under different flow settings. The mean error of the proposed RMG algorithm is 4.81%, which is much 
smaller than the mean error obtained by the traditional single sampling gate algorithms MXF and IWMF. 
Due to the steadiness and robustness of the RMG algorithm, it can be used in clinical practice to estimate 
volume flow and detect cardiovascular diseases. 
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Experiments to test the performance of the DIV algorithm were done for several different SNR levels. 
The data we deal with in this sectuib comes from the radio frequency (RF) carotid blood flow signals 
collected by ultrasound instruments. On the basis of the original spectral profile image, we add the 
Gaussian white noise with a constant mean of 0 and variance of 0.01, 0.02, 0.03, 0.04, and 0.05, 
respectively, to test the performance of the three algorithms in different SNR levels. The ideal curve of 
the experiment is the mean velocity curve drawn by an experienced clinician according to the spectral 
profile image. 

 

Table 1. Estimated volume flow values and mean errors by the proposed method and the two comparison 
methods 

Flow 
(L/hr) 

Measured 
flow 

(mL/s) 

RMG IWMF MXF  
Volume 

flow 
(mL/s)

Error (%) 
Volume 

flow 
(mL/s)

Error (%) 
Volume 

flow 
(mL/s) 

Error (%) 

20 5.28 5.58  5.68 5.89 11.55 7.93 50.20 
24 6.33 6.32 0.16 6.10 3.60 8.34 31.75 
30 7.92 7.29 7.95 6.63 16.29 9.41 18.81 
40 10.56 10.11 4.26 8.48 19.70 13.09 23.96 
50 13.19 12.40 5.99 9.63 27.00 15.42 16.91 

Mean error (%) 4.81 15.65 28.33 
 
Fig. 4 shows the experimental results of mean velocity estimation in the spectral profile images of six 

different SNR conditions. It is found that in the lower SNR spectral profile images, as shown in Fig. 4, the 
IWMV and MXV have larger errors. With the increase of noise, the mean velocity curves obtained by 
IWMV and MXV show serious jitter and it leads to inaccurate calculation of the mean velocity at the 
local details. Therefore, in the results from IWMV and MXV in Fig. 4, the mean velocity estimation is 
failing in the case of greater noise. In the same condition of low SNR, the proposed DIV algorithm works 
well. 

In this section, the index called Pratt’s figure of merit (PFOM) is used [18,19]. It represents deviation 
of the calculated curve from the ideal curve. The closer the PFOM value is to 1, the closer the two curves 
are [20]. By calculating the PFOM value of the velocity curve obtained and the ideal curve, the accuracy 
of the algorithm can be observed. PFOM value is defined as: 

 

                   = 	{ , } ∑ ( )                                                          (18) 
 

where M is the actual number of estimated mean velocity points, N is the number of standard mean 
velocity points,  is the scaling constant (usually 1/9), and ( ) is the distance between estimated mean 
velocity point and standard mean velocity. 

Experiments on 10 sets of data are carried out to obtain the mean values and standard deviations of 
PFOM values under different noise conditions. We add the Gaussian white noise with a constant mean 
of 0 and variance of 0.01, 0.02, 0.03, 0.04, and 0.05, respectively, to each set of original data. Fig. 5 gives 
the results of PFOM mean for the three algorithms. The PFOM mean of DIV is significantly higher than 
the IWMV and MXV. The PFOM mean of DIV is closer to 1 and it shows that the mean velocity curve 
obtained by DIV is closer to the ideal curve drawn by the experienced clinician. Moreover, the line chart 
shows that the PFOM mean of the algorithm DIV is more stable and its jitter is smaller in the case of 
different noises. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4. Comparison of the mean velocity estimation using IWMV, MXV, and DIV algorithms and the 
ideal curve drawn by an experienced clinician, on carotid artery spectral profile images, in different noise 
conditions: (a) the original spectral profile image, (b)–(f) are the spectral profile images added Gaussian 
white noise with mean of 0 and variance of 0.01, 0.02, 0.03, 0.04, and 0.05, respectively. 

 
Fairly low standard deviations of DIV algorithm in different noise conditions are found in Table 2. 

Less than 6% mean standard deviation by using DIV algorithm to estimate mean velocity is observed. 
Therefore, it is steady when Gaussian white noise is added with mean of 0 and variance range of 0.1–0.5, 
which indicates that the mean velocity estimated by DIV has very low sensitivity to SNR. Mean velocity 
estimated using DIV in vivo data can be observed to show better performance compared with IWMV and 
MXV at the same SNR level. These results point toward robust mean velocity estimation of DIV 
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algorithm with low sensitivity to SNR. When the noise level is very high, the algorithm MXV fails 
completely and the PFOM mean of each set of data is very small, as shown in Fig. 5, so the standard 
deviation is very small. Therefore, there will be such a case that the standard deviation is small in Table 2. 

 

 
Fig. 5. PFOM mean of DIV, IWMV, and MXV algorithms by varying variance of Gaussian white noise 
from 0.01 to 0.05 when mean of Gaussian white noise is 0. 

 
Table 2. PFOM standard deviations by the proposed method and the two comparison methods 

Different noise conditions 
PFOM standard deviation (%) 

DIV IWMV MXV 
Original 2.56 12.77 12.29 

0.01 0.99 9.56 14.96 
0.02 11.60 41.42 31.82 
0.03 6.32 7.23 23.84 
0.04 8.59 24.21 31.20 
0.05 5.25 39.18 7.98 

Mean standard deviation 5.34 22.40 20.35 

 
 

4. Conclusion 

In this paper a robust ultrasound blood volume flow estimation algorithm based on multigate (RMG) 
and an accurate double iterative algorithm for estimating the mean velocity (DIV) have been presented. 
Based on the multigate method, the velocity and volume flow of each sub sampling gate can be estimated, 
which provides clinicians with detail information on the local velocity distribution. Experiments to test 
the performance of the DIV algorithm were done for different SNR levels. Low errors in mean velocity 
estimation are observed. Mean standard deviation of the mean velocity estimation is 5.34% and is 
significantly low. The stability in PFOM calculation for different SNR levels suggest that the DIV 
algorithm is robust and with low sensitivity to SNR. The RMG algorithm is tested in a custom-designed 
experimental setup, Doppler phantom and imitation blood flow control system. Less than 5% mean error 
suggests that the RMG algorithm provides better performance compared with the existing volume flow 
estimation algorithms. Estimation of accurate blood volume flow in ultrasound Doppler blood flow 
spectrograms is of important guiding significance for monitoring cardiovascular diseases. Therefore, the 
stability and robustness of the proposed algorithm shows that it can be widely applied to real-time blood 
volume flow estimation in clinical practice, which can be useful in monitoring cardiovascular diseases. In 
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summary, we are optimistic about the potential of this new approach to blood volume flow estimation 
for use in future medical instruments. 
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