• Title/Summary/Keyword: Srivastava's triple hypergeometric functions

Search Result 13, Processing Time 0.021 seconds

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

SUMMATION FORMULAS DERIVED FROM THE SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES HC

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.185-191
    • /
    • 2010
  • Srivastava noticed the existence of three additional complete triple hypergeometric functions $H_A$, $H_B$ and $H_C$ of the second order in the course of an extensive investigation of Lauricella's fourteen hypergeometric functions of three variables. In 2004, Rathie and Kim obtained four summation formulas containing a large number of very interesting reducible cases of Srivastava's triple hypergeometric series $H_A$ and $H_C$. Here we are also aiming at presenting two unified summation formulas (actually, including 62 ones) for some reducible cases of Srivastava's $H_C$ with the help of generalized Dixon's theorem and generalized Whipple's theorem on the sum of a $_3F_2$ obtained earlier by Lavoie et al.. Some special cases of our results are also considered.

Recursion Formulas for Exton's triple Hypergeometric Functions

  • Sahai, Vivek;Verma, Ashish
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.473-506
    • /
    • 2016
  • This paper continues the study of recursion formulas of multivariable hypergeometric functions. Earlier, in [4], the authors have given the recursion formulas for three variable Lauricella functions, Srivastava's triple hypergeometric functions and k-variable Lauricella functions. Further, in [5], we have obtained recursion formulas for the general triple hypergeometric function. We present here the recursion formulas for Exton's triple hypergeometric functions.

A REDUCIBILITY OF SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES F(3)[x, y, z]

  • Choi, Junesang;Wang, Xiaoxia;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.297-301
    • /
    • 2013
  • When certain general single or multiple hypergeometric functions were introduced, their reduction formulas have naturally been investigated. Here, in this paper, we aim at presenting a very interesting reduction formula for the Srivastava's triple hypergeometric function $F^{(3)}[x,y,z]$ by applying the so-called Beta integral method to the Henrici's triple product formula for hypergeometric series.

NOTE ON SRIVASTAVA'S TRIFLE HYPERGEOMETRIC SERIES HA AND HC

  • Kim, Yong-Sup;Rathie, Arjun-K.;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.581-586
    • /
    • 2003
  • The aim of this note is to consider some interesting reducible cases of $H_{A}\;and\;H_{C}$ introduced by Srivastava who actually noticed the existence of three additional complete triple hypergeometric functions $H_{A},\;H_{B},\;and\;H_{C}$ of the second order in the course of an extensive investigation of Lauricella's fourteen hypergeometric functions of three variables.

ANOTHER METHOD FOR PADMANABHAM'S TRANSFORMATION FORMULA FOR EXTON'S TRIPLE HYPERGEOMETRIC SERIES X8

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.517-521
    • /
    • 2009
  • The object of this note is to derive Padmanabham's transformation formula for Exton's triple hypergeometric series $X_8$ by using a different method from that of Padmanabham's. An interesting special case is also pointed out.