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INTEGRAL REPRESENTATIONS FOR SRIVASTAVA’S
HYPERGEOMETRIC FUNCTION H¢

JUNESANG CHOI, ANVAR HASANOV AND MAMASALI TURAEV

Abstract. While investigating the Lauricella’s list of 14 complete
second-order hypergeometric series in three variables, Srivastava
noticed the existence of three additional complete triple hypergeo-
metric series of the second order, which were denoted by Ha, Hg
and Hc. Each of these three triple hypergeometric functions H 4,
Hp and Hc has been investigated extensively in many different
ways including, for example, in the problem of finding their inte-
gral representations of one kind or the other. Here, in this paper, we
aim at presenting further integral representations for the Srivatava’s
triple hypergeometric function H¢.

1. Introduction and Preliminaries

In the theory of hypergeometric functions of several variables, a re-
markably large number of triple hypergeometric functions have been
introduced and investigated. A comprehensive table of 205 distinct
triple hypergeometric functions is provided in the work of Srivastava
and Karlsson [17, Chapter 3]. Out of these 205 distinct triple hyperge-
ometric functions, Lauricella [10, p. 114] introduced fourteen complete
triple hypergeometric functions of the second order. He denoted his
triple hypergeometric functions by the symbols F}, ..., Fi4 of which
Py, F5, F3 and Fy correspond, respectively, to the three variable Lau-

ricella functions Fég), F g’), Fg’) and FJSS) that are the three-variable

cases of the n-variable Lauricella functions FXL), Fl(gn), Fén) and Fl()n)
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(¢f. [10, p. 113]; see also [1, p. 114, Equations (1) to (4)], [17, p. 33
et seq.] and [7, 8]). Saran [12] initiated a systematic study of these ten
triple hypergeometric functions from Lauricella’s set. Exton [6] intro-
duced 20 distinct triple hypergeometric functions, which he denoted by
X1, ..., X90, and investigated their twenty Laplace integral representa-
tions whose kernels include the confluent hypergeometric functions oF3i
and 1F}, and the Humbert hypergeometric functions W9 and ®5 of two
variables. The four Appell hypergeometric functions Fi, ..., Fy of two
variables are simply the special case of Lauricella’s n-variable functions
when n = 2, that is,

AR=FY FRBR=FY RKB=FY ad F=F.

While transforming Pochhammer’s double-loop contour integrals as-
sociated with the functions Fg and F4 (that is, F; and Fr, respectively)
belonging to Lauricella’s set of hypergeometric functions of three vari-
ables, Srivastava [13, 14] discovered the existence of three additional
complete triple hypergeometric functions H 4, Hg and H¢ of the second
order, of which H¢ is defined as follows (see also [17, p. 43, Equation
1.5(12))):

Hc (a1, a2,a3; ¢; x,y, 2)

_ i (al)m+p(a2)m+n(a3)n+pﬁgzp

(1.1) m,n,p=0 (C)m—i-n—i-p m! n! p!

(’33‘:31'<1§ lyl=:s<1; |z =t < 1;

r+s+t—2\/(1—r)(1—s)(1—t)<2>,

where, with C and Z; denoting the set of complex numbers and the set
of nonpositive integers, respectively, (\), is the Pochhammer symbol
defined (for A € C) by

(A +n) 1 (n=0)
(1.2) <A)n-—m—{A(H1)...(A+n1) (n €N),

N := {1, 2,3, ...} and T being the well-known Gamma function. Of
course, all 20 of Exton’s triple hypergeometric functions Xi, ..., Xgg
as well as Srivastava’s triple hypergeometric functions H4, Hp and H¢
are included in the set of the aforementioned 205 distinct triple hyper-
geometric functions which were presented systematically by Srivastava
and Karlsson [17, Chapter 3]. The above-stated three-dimensional re-
gion of convergence of the triple hypergeometric function in (1.1) for He
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was given by Srivastava [13, 14] (see also Srivastava and Karlsson [17,
Section 3.4]).

Various multivariable generalizations and cases of reducibility of Sri-
vastava’s functions Hy, Hp and H¢o have been investigated (see, for
details, [17, pp. 43-44]). Turaev [19] studied the Srivastava function
H,. Hasanov et al. [9] reproduced Srivastava’s integral representations
for the functions [13, 14] H4, Hp and H¢c. Very recently, Choi et al.
([2], [3] and [4]) also presented certain integral representations for the
functions H4, Hp and H¢.

Here, in this present sequel to some of the above-mentioned works, we
aim at investigating further 17 integral representations for the Srivastava
function He, for completeness, including the five ones in [2].

2. Integral Representations for Srivastava’s hypergeometric
function Hg

Theorem.  Fach of the following integral representations for Hc
holds true.

I (s)
I'(a1)T (s —a1)

He (a1, a2,a3;¢;,2,y,2) =

1

(2.1) ‘/é-(m—l (1 -6V Hp (s, a9, a3; ¢; 2€, y, 2€) dE
O (R(s) > R(a1) > 0);
He (a1, 02,0352,y 2) = 1 (@)Fr(zg) — ay)
(2.2) /

. /§a21 (1-— 5)87‘1271 He (a1, s,a3;¢;28,y€, 2) d§
0
(R(s) > R(az) > 0);

L' (s)
['(a3)T (s —as3)

He (a1, a2,a3;¢,2,y,2) =

1
(2.3) . /fag—l (1 o g)s—a:a—l HC (Gla a9, 8; C; x,yf, Zf) df
0
(

R(s) > R(az) > 0);
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I (e
H (ar, a3, a5:¢;,9,2) = P(—()>r()

1

- / (1= € He (ar, as, ag: s: a6, y€, 2€) de
0
(R(c) > R(s) > 0) :

(2.4)

(2.5)

1
r
Ho (onan i s) = rrgr—gy | €47 -0
0

(1—28) (1267 as,as;c — ay; y(1=¢)
(=07 (1= 2™ F (e 202 e
(R(c) > R(ay) > 0);

(2.6)

1
T
He (@1, a2, a3 ¢;2,9,2) = I (az) F((Cc)— az) /5%_1 (1—geet
0

(=€) (1= yg) " F <‘“’“3” RNt —Zx%?ﬁ y§>> *
(R(c) > R(az) > 0);

(2.7)

1
T
He (a1, 02, a5 52, 2) = I (a3) F((Cc)— as) /£a3_1 (1—¢ !
0

(=g (1= 2™ F (o - e
(R(c) > R(az) > 0);
1
HC’ <a17a27a3;c;x7y7z) = Im /§a1—1 (1 - g)(m—l
0

- Xog [a1 + ag,az; ;26 (1 =€),y (1 —§),2€]d§
(R(ar) > 0; R(az) >0);

(2.8)
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I (a1 + a2 + a3)
T (al) r (ag) T (a3)

1 1
0

Hc (a1,a2,a3;¢,2,y,2) =

(2.9) 0
_F[al+a2+a3 a1+a2+a3+1_6_
2 ) 2 b )
dnz§(1-n+y (1 -8 (1 —n)+26(1—n)]|dsdn
(R(a1) > 0; R(az) > 0; R(az) > 0);
(2.10)
He (a1, az,a3;¢;2,y,2) = 1+)\ /fal L yeret
C—CL1

(LA X)PPTBTOL 4N — (14 \) x] @ [1+/\§ (1+ )
y(1+A)(1-¢)
[L+X = (L+N) €] [1+ A= (1+N)2€]

(R(c) > R(a1) > 0; R(N) > —1);

z¢]
dg

- F'|ag,a3;¢c— ay;

(2.11)
Le)(B=7)" (a—y)""
I'(a1)T (c—ay) (B —a) 27!

He (a1, a9, a3;¢,1,y,2) =

B
/ ﬁ é— c al— 1 a)al—l (5 _ ,y)a2+a3—c

JB=a) (=) - B-7)(—a)z]™*
B =) (=) = (B—7)(§—a) 2] * F (a2, a3; ¢ — a1;0y) d§
(R(c) > R(a1) >0; vy <a<f),

_ (8—a) (=) (-7 (B9 |
(G- E—)-(B-NE-a)a[(F-a)E—)—(F-1E—a)z)
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(2.12)
F'(c)(v—=58)" (v —a)™™
IF'(a)T(c—ar) (B — a)C—GQ—a:s—l

He (a1, a2,a3;¢c;,2,y,2) =

B
/ /8 f c a1— 1 - a)al—l (’Y _ é-)az—l—ag—c

JB-a)(y =) —(v=B)(E—a)a] ™
(B=a)(v =8 = (v=B) (£ —a) 2] * F(az,as;c — ar;0y) d€
(R(c) > R(a1) >0; a< B <),

_ B-a)y-—a) (-8 (=9 :
[(B-a)(y =) -(r=B)(E-a)al[B-a)(y =) —(v=B) (§ —a)z]

(2.13)

r
He (ay,a2,a3;¢,2,y,2) = (o) [‘((CC)_ = /§a11 (1+ §)a2+a370
0

S+ €= 8x) " (1+£—£2)7" F(ag, a3;¢ — ar; 0y) d§
(R(c) > R(a1) > 0),

where
B 1+¢ -
(I+&—&x)(1+&— &)
(2.14)
7 c a1—1
Hc (a1, a2,a3;¢0,y,2) = / 1 —e
C—CL1
0

—as

. [1 — 336_5} o {1 — ze_g} F (ag,a3;¢c— ay;oy) d§
(R(c) > R(ay) > 0),
where

(1-e®)y
(1—ze8) (1 —ze¢)’

g =
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2T (¢)
I'(a) T (¢ —ay)

He (a1, az,a3;¢,2,y, 2) =

(2.15) / sin f g COS f)c_al_% [1 — rsin2 f] —az
0
. [1 — zsin? f] U (ag,a3;c—ay;oy)d§
(R(c) > R(a1) > 0),
where
L cos? € '
7= (1 — xsin2§) (1 — zsinzf) ’
(2.16)

I'(c)(1+N)"
I'(a1)T(c—ay)

He (a1, a2,a3;¢;2,y,2) =

7\'
2 a1
/ sin f @=3 cos {)C M7y

1+ Asin?& — (1+ N asin®¢]™™
1+)\sm f)c azmas [ ( ) ]

0
1+ Asin? € — (14 A) zsin? €] ™™ F (a2, a3; ¢ — ag; o0y) d
(R(c) > R(a1) > 0; A > —1),
where
(1 + Asin? §) cos® & .
- [1+ Asin?& — (14 A) zsin®¢] [1+ Asin? € — (1 + ) zsin?¢]’

(2.17)
[(c)\®
I'(a)T (¢ —aq)

He (a1, a2,a3;¢;,2,y,2) =

a1
sm 5 ~3 cos f)c M3

(cos2& + Asin? &)

(cos? € + Asin® € — Awsin®€) e

o\

(cos €+ Asin? ¢ — Az sin? 5)_a3 F (as,a3;c — ay;oy) dé
(R(c) > R(a1) >0; A>0),
where
(COS2 € + Asin? 5) cos? &
((30525 + Asin? € — Az sin? 5) (c052£ + Asin? € — Az sin? 5) .
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Here, F' and Xao denote the Gaussian hypergeometric function and a
new FExton type hypergeometric function, respectively:

(2.18) F(a,byc;x) = 3 %xm

and

(a1)2m+n+p (aQ)n-i-p ﬁgi
(9 —— m! n! p!

(219)  Xa(a1,a2;¢;2,y,2) =

m7n7p:0

Proof. There may be several methods to prove those formulas pre-
sented here (see, for example, [13] and [2]). Each of the integral repre-
sentations (2.1) to (2.16) can also be proved directly by expressing the
series definition of the involved special function in each integrand and
changing the order of the integral sign and the summation, and finally
using the following well-known relationship between the Beta function
B(a, ), the Gamma function I'" and their various associated Eulerian
integrals (see, for example, [5, pp. 9-11], [15, 16, Section 1.1] and [18,
p. 26 and p. 86, Problem 1]):

/%”%L%W*ﬁ (R(a) > 0; R(3) > 0)
(2.20)  B(a, ) =< 70

Tt (0, B €C\Z5),

(2.21)

g . o _ o0 Tafl

B(a, ﬁ):2/0 (sin 0)2¢~1 (cos 0)%° 1d9:/0 Wdr
(R(a) > 0; R() > 0)
and
(2.22)
b—eo)(a—c)f [P (t—a)*t (b—t)f!

B@J@Z(@j@;ﬁg / ( &—3“5) dt (c<a<b)

1 ja-1 _ #\p-1
:O+M“A zjfﬁﬁwﬁ (A > 1)

(R(a) > 0; R(B) > 0).
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Concluding Remarks

Integral representations for most of the special functions of mathe-

matical physics and applied mathematics have been investigated in the
existing literature. Here we have presented only some illustrative inte-
gral representations for the Srivastava’s function Heo. A variety of inte-
gral representations of H¢e, which may be different from those presented
here, can also be provided. Integral representations (2.5), (2.9), (2.10),
(2.11), (2.13) and (2.15) here include and correspond with the integral
representations (4.1), (4.2), (4.3), (4.4), (4.5) and (4.6), respectively, in

[2].
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