• Title/Summary/Keyword: Split Tee(T-stub)

Search Result 8, Processing Time 0.015 seconds

Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection (상·하부 T-stub 접합부의 초기회전강성 평가)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.133-142
    • /
    • 2014
  • Double split tee connection is a full strength-partial restrained connection that suitable for ordinary moment frame and special moment frame which demonstrates behavior characteristics depending on the stiffness ratio of columns and beams, changes in the geometric shape of the T-stub, number of fasteners and effect of panel zone. For the double split tee connection to ensure structurally safe behavior, it needs to exhibit sufficient strength, stiffness and ductile capacity. This study sought to investigate the effects of the moment-rotation angle relationship of the double split tee connection and to evaluate the initial rotational stiffness of the double split tee connection depending on changes in the geometric shape of the T-stub. To this end, two different double split tee connection specimens are experimented which designed to change geometric parameter values (${\alpha}^{\prime}$) of the T-stub, and a three-dimensional finite element analysis was performed.

Development of Connection Details for a Double Split Tee Connection Without a Shear Tab (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 개발)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • The double split tee connection, a type of beam-to-column moment connection, exhibits different behavioral characteristics according to changes in the thickness of the T-stub flange, the gauge distance of the high-strength bolt, and the number and diameter of high-strength bolts. In general, the double split tee connection is idealized and designed so that a T-stub fastened to the top and bottom supports a flexural moment, and a shear tab supports a shear force. However, if the double split tee connection is applied to low-and medium-rise steel structures, the size of the beam member becomes small, and thus the shear tab cannot be bolted to the web of a beam. In this regard, this study was conducted to propose connection details to ensure that the double split tee connection with a geometric shape can display sufficient shear resisting capacity. To this end, experiments were conducted using full-scale specimens for the double split tee connection.

Design Formula for the Flexural Strength of a Double Split Tee Connection (상·하부 스플릿 T 접합부의 휨강도 설계식)

  • Yang, Jae-Gue;Kim, Joo-Wo;Kim, Yu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.511-520
    • /
    • 2012
  • The double split Tee connection, a type of full strength-partially restrained connection, has adequate flexural strength according to the changes in the thickness of the T-stub flange and the gauge distance of the high-strength bolts. Moreover, the double split Tee connection is designed and constructed with seismic connections that have enough ductility capacity applicable to ordinary moment frame and special moment frame by grade of steel, size of beam and column and geometric connection shape. However, such a domestic research and a proposal of a suitable design formula about the double split Tee connection are insufficient. Thus, many experimental and analytical studies are in need for the domestic application of the double split Tee connection. Therefore, this study aimed to examine and suggest feasibility of a design formula of the double split Tee connection of FEMA.

Design of a Steel Structural Building Using Double Split Tee Connections without Shear Tabs (전단탭이 없는 상·하부 스플릿 티 접합부를 적용한 강구조물의 설계)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.85-96
    • /
    • 2016
  • Double split tee connection has various strength, stiffness, and energy dissipation capacity according to changes of thickness of T-stub flange and gauge distance, number, and diameter of high-strength bolt. If the double split tee connection is applied to a low- or medium-rise steel structure, a shear tab can't be applied for supporting shear force because of geometrical limitation. So it is required to propose details of improved double split tee connection to support shear force as well as flexural force. This research was performed to see if enough rotational stiffness is found when the double split tee connection without shear tab which was obtained through analytic and experimental researches by Yang et al. is applied to a low- or medium-rise steel structure. Also, it was seen if the low- or medium-rise steel structure having double split tee connection without shear tab has safe structural behavior, as well as material saving effect.

Proposal of Connection Details for a Double Split Tee Connection Without a Shear tap (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 제안)

  • Yang, Jae Guen;Lee, Hyung Dong;Kim, Yong Boem;Pae, Da Sol
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.423-433
    • /
    • 2015
  • A double split tee connection, which is a beam-column moment connection, shows different behavioral characteristics under the influences of the thickness of a T-stub flange, a high-strength bolt gauge distance, and the number and diameter of a high-strength bolt. A double split tee connection is idealized and designed that a flexural moment normally acting on connections can be resisted by a T-stub and a shear force by a shear tap. However, where a double split tee connection is adopted to a low-and medium-rise steel structure, a small-sized beam member can be adopted. Then, a shear tab may not be bolted to the web of a beam. This study was conducted to suggest the details of a connection to secure that a double split tee connection with a geometric shape has a sufficient capacity to resist a shear force. To verify this, this study was conducted to make a three-dimensional nonlinear finite element analysis on a double split tee connection.

Structural Tensile Capacities of Split-Tee Connection with High Strength Bolts (고력볼트 Split Tee 접합부의 인장내력)

  • Choi, Hye Kyoung;Choi, Sung Mo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.541-549
    • /
    • 2003
  • Split-tee connection with High Strength Bolts is normally used in low and middle rise buildings in Europe because the structural efficiency and installation work of connections are excellent. However, the domestic situation is different from that in Europe. The analysis and the design for the T-split connection are complicated, because the structural behavior often T-split connection with High Strength Bolt is governed by so many parameters, i.e., prying action, bolt's tension, shear failure and plastic failure of flange plates. Many researches regarding the structural behavior of the split-tee connection have been undertaken in other parts of the world, such as the, Americas, Japan and Europe, but in the domestic context, this is a pioneering study. Therefore, the purpose of this paper is to supply basic data for the design of T-split connection, and to verify the structural characteristics that define reactions to prying action, based on an experimental study.

Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection (상·하부 스플릿 T 접합부의 초기회전강성 예측모델)

  • Yang, Jae-Guen;Kim, Yun;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.279-287
    • /
    • 2012
  • A double split tee connection is used as a connection that is suitable for ordinary moment frames or special moment frames according to the combination of variables of the thickness of the T-stub flange and the gauge distance of the high-strength bolts. In order to demonstrate safe structural behavior, a double split tee connection must meet the requirements for inter-story drift angles and the moment of connection, as defined in the Korea Building Code-Structural. In order to determine whether the these requirements are met, it is necessary to predict rotational stiffness and the ultimate plastic moment of the connection. Therefore, this study primarily aimed to propose an analytical model for predicting the rotational stiffness of a double split tee connection under a static load. Toward this end, a three-dimensional, non-linear finite element analysis was carried out. Then, the applicability of the proposed model was verified after comparing the test results of this study with other studies.

The Static Strength Analysis of Prying Action for T-flange Shape Structure Using F10T High Strength Bolt (F10T 고장력 볼트를 이용한 T-형 플랜지형 구조물의 Prying Action에 따른 정적강도 해석)

  • Park, Myung-Kyun;Lee, Joong-Won;Koo, Bon-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents and discusses the experimental results on the F10T high strength bolts used in the T-flange joint structure. The experimental works were carried out for the parameters which are flange web thickness, the distance between bolts, prying ratio. The results show that the working stress imposed to bolts decreases as the flange web thickness increases on the other hand the imposed stress to the bolts increases as the distance between two bolts increases. In other words the strength of the T-flange joint increased as the web flange thickness increases and the distance between two bolts decreases. The prying ratio is increased as the distance between two bolts increases and as the flange web thickness decreases However, the degree of stress decrease in flange thickness variation is not that high as the distance variation between two bolts. Finally the equation for predicting the failure stress in T-flange joint structure using F10T high strength bolts was suggested.