DOI QR코드

DOI QR Code

Design Formula for the Flexural Strength of a Double Split Tee Connection

상·하부 스플릿 T 접합부의 휨강도 설계식

  • Yang, Jae-Gue (Dept. of Architecture, Inha University) ;
  • Kim, Joo-Wo (Dept. of Architecture, Semyung University) ;
  • Kim, Yu (Dept. of Architecture, Inha University)
  • 양재근 (인하대학교, 건축학부) ;
  • 김주우 (세명대학교, 건축공학과) ;
  • 김윤 (인하대학교, 건축공학과)
  • Received : 2012.03.16
  • Accepted : 2012.09.25
  • Published : 2012.10.27

Abstract

The double split Tee connection, a type of full strength-partially restrained connection, has adequate flexural strength according to the changes in the thickness of the T-stub flange and the gauge distance of the high-strength bolts. Moreover, the double split Tee connection is designed and constructed with seismic connections that have enough ductility capacity applicable to ordinary moment frame and special moment frame by grade of steel, size of beam and column and geometric connection shape. However, such a domestic research and a proposal of a suitable design formula about the double split Tee connection are insufficient. Thus, many experimental and analytical studies are in need for the domestic application of the double split Tee connection. Therefore, this study aimed to examine and suggest feasibility of a design formula of the double split Tee connection of FEMA.

상 하부 스플릿 T 접합부는 부분강접 접합부의 한 형태로 접합부에 사용된 T-stub의 두께 및 고력볼트 게이지 거리 변화에 따라서 충분한 휨강도를 갖는다. 뿐만 아니라 상 하부 스플릿 T 접합부는 강재의 종류, 보 및 기둥의 규격, 접합부 형상 등의 조합에 의하여 보통모멘트골조 혹은 특수모멘트골조에 적용 가능한 충분한 연성능력을 갖는 내진접합부로 설계 및 시공 된다. 그러나 이러한 상 하부 스플릿 T 접합부에 대한 국내의 연구는 아직 미흡한 상황이며 적합한 설계식의 제안도 이루어지고 있지 않다. 그러므로 상 하부 스플릿 T 접합부의 국내 적용을 위해서는 많은 실험 및 해석적 연구가 필요한 상황이다. 따라서 이 연구는 FEMA의 상 하부 스플릿 T 접합부에 대한 설계식을 검토하고 국내의 적용 가능성을 타진하고자 진행하였다.

Keywords

References

  1. FEMA-350 (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
  2. FEMA-355D (2000) State of the Art Report on Connection Performance, prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
  3. Swanson, J.A. (1999) Characterization of the Strength, Stiffness, and Ductility Behavior of T-stub Connections, Ph. D. Dissertation, Georgia Institute of Technology, Atlanta, USA.
  4. Swanson, J.A. and Leon, R.T. (2000) Bolted steel connections: Tests on T-stub components, Journal of Structural Engineering, ASCE, Vol. 126, No. 1, pp.50-56. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:1(50)
  5. Girao Coelho, A.M., Simoes da Silva, L., and Bijlaard, F.S.K. (2004) Characterization of The Nonlinear Behaviour of Single Bolted T-stub Connections, Proceedings of The Fifth International Workshop on Connections : Connections in Steel Structures, Behavior, Strength and Design, AISC- ECCS, Amsterdam, pp.53-120.
  6. Girao Coelho, A. M., Simoes da Silva, L. and Bijlaard, F.S.K. (2006) Finite-Element Modeling of the Nonlinear Behavior of Bolted T-stub Connections, Journal of Structural Engineering, ASCE, Vol. 132, No. 6, pp.918-928 https://doi.org/10.1061/(ASCE)0733-9445(2006)132:6(918)
  7. Faella, C., Piluso, V., and Rizzano, G. (2000) Structural steel semi-rigid connections: Theory, design, and software, CRC Press
  8. Kulak, G. L., Fisher, J. W. and Struik, J. H. A. (2001). Guide To Design Criteria For Bolted and Riveted Joints 2nd Ed., American Institute of Steel Construction, Wiley, New York.
  9. Piluso, V., Faella, C., and Rizzano, G. (2001) Ultimate Behavior of Bolted T-stubs. I : Theoretical Model, Journal of Structural Engineering, ASCE, Vol. 127, No. 6, pp.686-693. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(686)
  10. Piluso, V., Faella, C., and Rizzano, G. (2001) Ultimate Behavior of Bolted T-stubs. II : Model Validation, Journal of Structural Engineering, ASCE, Vol. 127, No. 6, pp.694-704. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(694)
  11. Swanson, J.A. (2002) Ultimate Strength Prying Models for Bolted T-stub Connections, Engineering Journal, AISC, Vol. 39, No. 3, pp.136-147.
  12. Lemonis, M.E. and Gantes, C.J. (2006) Incremental Modeling of T-Stub Connections, Journal of Mechanics of Materials and Structures, Vol. 1, No. 7, pp.1135-1159. https://doi.org/10.2140/jomms.2006.1.1135
  13. Piluso, V., Rizzano, G., and Sabatino, R. (2008) Prediction of Ultimate Behaviour of Bolted T-stubs : Influence of Bolt Preloading, EUROSTEEL 2008, Graz, Austria, pp.513-518.
  14. Piluso, V., Rizzano, G., and Sabatino, R. (2009) Influence of Bolt Preloading and Flexural Effects on the Ultimate Behaviour of Bolted T-stubs, Proceedings of ICASS '09 - Sixth International Conference on Advances in Steel Structures, Hong Kong.
  15. Stankiewicz, B. (2002) Experimental Tests of T-stub Joints and Refined Finite Element Method Computer Model, EUROSTEEL 2002, Coimbra, Portugal.
  16. Swanson, J.A. and Leon, R.T. (2001) Stiffness Modeling of Bolted T-stub Connection Components, Journal of Structural Engineering, ASCE, Vol. 127, No. 5, pp.498-505. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:5(498)
  17. Swanson, J.A., Kokan, D.S., and Leon, R.T. (2002) Advanced Finite Element Modeling of Bolted T-stub Connection Components, Journal of Constructional Steel Research, Elsevier, Vol. 58, No. 5, pp.1015-1031. https://doi.org/10.1016/S0143-974X(01)00098-0
  18. Astaneh, A. (1985) Procedure For Design and Analysis of Hanger-Type Connections, Engineering Journal, AISC, Vol. 22, No. 2, pp.63-66.
  19. Thornton, W.A. (1985) Prying Action: A general treatment, Journal of Environmental Engineering, AISC, Vol. 22, pp.67-75.
  20. Yang, J.G., Park, J.H., Choi, J.H., and Kim, S.M. (2011) Characteristic Behavior of a T-stub Connection Under Shear, Including the Effects of Prying Action and Bolt Pretension, The 6th International Symposium on Steel Structures, KSSC, Korea, pp.1086-1092.
  21. Yang, J.G., Kim, H.K., and Park, J.H. (2012) Analytical Models for the Initial Axial Tensile Stiffness and Ultimate Tensile Load of a T-Stub, Including the Effects of Prying Action, International Journal of Steel Structures, KSSC, (inreviewing process).
  22. 양재근, 김윤, 박재호 (2012) 상.하부 스플릿 T 접합부의 초기회전강성 예측모델, 한국강구조학회논문집, 한국강구조학회, 제24권, 제3호, pp.279-287. Yang, J.G., Kim, Y. and Park J.H. (2012) Prediction model for the initial rotational stiffness of a double split T connection, Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No. 3, pp. 279-287 (in Korean). https://doi.org/10.7781/kjoss.2012.24.3.279
  23. Reinosa, J.M., Loureiro, A., Gutierrez R., and Moreno, A. (2008) Nonlinear Elastic-Plastic 3D Finite Element Modeling - Top and Seat Angle Connection with Double Web Angle, EUROSTEEL 2008, Graz, Austria, pp.501-506.
  24. 최정환 (2012) 지레작용효과를 고려한 T-stub의 초기인장강성 및 한계인장하중 예측을 위한 해석모델, 석사학위논문, 인하대학교. Choi, J.H. (2012) Analytical Models for the Initial Axial Tensile Stiffness and Ultimate Tensile Load of a T-Stub, Including the Effects of Prying Action, Master's Thesis, Inha University, Korea (in Korean).

Cited by

  1. Monotonic and Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Top-Seat Angle vol.26, pp.3, 2014, https://doi.org/10.7781/kjoss.2014.26.3.191
  2. A Study on Beam-to-Column Connections with Plate Type Energy Absorption System vol.25, pp.1, 2013, https://doi.org/10.7781/kjoss.2013.25.1.103
  3. Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection vol.26, pp.2, 2014, https://doi.org/10.7781/kjoss.2014.26.2.133
  4. CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동 vol.27, pp.1, 2012, https://doi.org/10.7781/kjoss.2015.27.1.099