• Title/Summary/Keyword: ordinary moment frame

Search Result 35, Processing Time 0.027 seconds

Seismic Evaluation of Ordinary Moment Concrete Frames Using Capacity Spectrum Method (지반특성과 지진지역에 따른 보통모멘트 골조의 내진성능 평가)

  • 권건업;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.947-952
    • /
    • 2001
  • This study is to evaluate seismic performance of ordinary moment concrete frames. Base shear and roof displacement relations are obtained from the experiment of 3 story ordinary moment resisting concrete frame. The frame was designed only for gravity loads. The performance of the building is evaluated using capacity spectrum method. Five different seismic zones and three different soil types are considered. For each condition of seismic zone and soil type, ten earthquake ground motions are used to establish the demand spectrum.

  • PDF

Seismic Performance Evaluation of 3 Story OMRCF Based on Scaled Model Testing (축소모델실험에 의한 철근콘크리트 3층 보통모멘트골조의 구조 성능 평가)

  • Han Sang-Whan;Kwon Gun-Up
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.673-678
    • /
    • 2005
  • ACI 318 (1999) defines three types of moment frames: Ordinary Moment Resisting Concrete Frame (OMRCF), Intermediate Moment Resisting Concrete Frame (IMRCF), and Special Moment Resisting Concrete Frame (SMRCF). OMRCF is the most popular type of moment frame in mild seismic zones that requires the least detail and design requirements. This study focuses on the seismic performance of Ordinary Moment Resisting Concrete Frames (OMRCF) designed only for gravity loads. For this purpose a 3-story OMRCF was designed in compliance with the minimum design requirements in ACI 318 (1999). An one third 3 story specimen was made and tested. For scaled model, the similitude law of true replica was applied. The specimen was loaded with quasi-static reversed cyclic lateral loading. The overall behavior of OMRCF is quite stable without abrupt strength degradation. It is found that tested frame has the base shear strength larger than the design base shear for seismic zone 1, 2A and 2B calculated using UBC 1997.

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames (철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Evaluation of Dynamic Behavior of moment resisting frame under probabilistic ground motions (확률론적 지진하중에 의한 모멘트 골조의 동적 거동평가)

  • 권오성;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.565-570
    • /
    • 2001
  • Base shear and roof drift relation was acquired from experiment of 3 story ordinary moment resisting frame which was designed using gravity loads. To evaluate the dynamic behavior of the frame, analytical model was generated from experimental result. Dynamic analysis was performed using the analytical model subjected to earthquake ground motions with 500, 1000, and 2400 years of return period. And capacity spectrum method was adopted to find the performance points of the frame. Both dynamic analysis and CSM showed that the performance of the frame meet the life safety objectives suggested by FEMA 273 and ATC 40.

  • PDF

Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Vetr, Mohammad G.
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.277-296
    • /
    • 2013
  • Margin of safety against potential of progressive collapse is among important features of a structural system. Often eccentricity in plan of a building causes concentration of damage, thus adversely affects its progressive collapse safety margin. In this paper the progressive collapse of symmetric and asymmetric 3-story reinforced concrete ordinary moment resisting frame buildings subjected to the earthquake ground motions are studied. The asymmetric buildings have 5%, 15% and 25% mass eccentricity. The distribution of the damage and spread of the collapse is investigated using nonlinear time history analyses. Results show that potential of the progressive collapse at both stiff and flexible edges of the buildings increases with increase in the level of asymmetry in buildings. It is also demonstrated that "drift" as a more easily available global response parameter is a good measure of the potential of progressive collapse rather than much difficult-to-calculate local response parameter of "number of collapse plastic hinges".

Numerical study on the post-earthquake fire behavior of intermediate steel moment frames

  • Parvizizadeh, Shayan;Kazemi, Mohammad Taghi
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.137-145
    • /
    • 2022
  • As steel is highly sensitive to temperature variations, fire exposure is more destructive in the case of steel structures in comparison to the concrete ones. The performance of an intermediate three-story steel moment frame with 4 spans was studied under the service load, thermal load and post-earthquake fire in this paper. Also, the effects of passive fire-protection materials such as ordinary cement-based and fire-retardant coatings were investigated. To model and analyze the structure; Abaqus software is utilized. In order to apply the earthquake effect, the push-over analysis method is employed. Changes in the stories deflection, endurance time and growth of nonlinear regions due to losses in the steel stiffness and strength, are among the issues considered in this study. As an interesting finding, the beams protected by ordinary cement-based coating could sustain the fire exposure at least for 30 minutes in all cases. The mentioned time is increased by employing a new fire-retardant protection, which could prevent significant loss in the structure resistance against fire, even after 60 minutes of exposure to fire.

Seismic Performance Evaluation and Economic Analysis of 5-Story RC Moment-Resisting Frames (5층 철근콘크리트 모멘트-저항골조 구조물의 내진성능 평가 및 공사원가 분석)

  • Kang, Suk-Bong;Kim, Sungdae;Park, Eu-Su;Oh, Sangmuk;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.569-577
    • /
    • 2015
  • Recently, the concept of seismic design has changed from prescriptive to performance based design. For the performance based design with the specified target performance of the structure, it is necessary to execute the inelastic structural analysis to predict precisely the actual behavior of the structure. To address this issue, the seismic performance of the 5-story RC moment-resisting frames designed in accordance with KBC2009 is evaluated through push-over analysis and economic analysis is conducted focused on the direct construction costs. The results show that the ordinary and the intermediate moment-resisting frame are evaluated to meet the required performance design criteria and that the direct construction costs of the two frames are similar. However, although the special moment-resisting frame designed with strong column-weak girder philosophy satisfies the required performance design criteria, the direct construction cost is uneconomical compared with other frames. Therefore, although the intermediate moment-resisting frame of design category D is prohibited in IBC2012, the ordinary and the intermediate moment-resisting frame are estimated to be more reasonable than the special moment-resisting frame for the design of 5-story RC moment-resisting frame.

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.

Structural Performance Evaluation of Slab-Beam-Column Subassemblage in R/C Ordinary Moment Frame Building (철근콘크리트 보통모멘트 골조의 슬래브-보-기둥 부재의 구조성능 평가)

  • 유혁상;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.757-762
    • /
    • 2000
  • The purpose of this study is to investigate the performance of slab-beam-column subassemblage in the Ordinary Moment Frame(OMF). For this purpose, 3-story building was designed according to UBC and ACI building code(ACI 318-99) and the subassemblages of in the first story were constructed. The subassemblages were classified into interior and exterior. Each interior and exterior subassemblage is modeled by the 2/3 scale experimental specimens. All the specimens have the transverse beam and the columns on the slab have the lap splice as the typical exterior and interior slab-beam-column subassemblage. The interior subassemblage was tested under the constant axial force, while the exterior subassemblage was tested under the fluctuating axial force. Based on the results of the experiments, the performance of each subassemblage is evaluated and the failure mode is investigated.

  • PDF

Etructural Performance Evaluation of Columns in a Reinforced Concrete Ordinary Moment Frame Building (철근콘크리트 보통모멘트조건물의 기두에 대한 구조성능 평가)

  • 배성진;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.440-445
    • /
    • 2000
  • The purpose of this study is to investigate the structural performance of columns in an Reinforced Concrete Ordinary Moment Frame building. For this purpose, a 3-story building was designed according to the Korea seismic design provisons and ACI 318-99, and the columns of in the first story were constructed. The columns were classified into interior and columns. For each interior and exterior columns, upper and lower parts ate modeled by the 2/3 scale experimental specimens. The specimens for lower part columns have lap splice. The interior columns were tested under the constant axial force, while the exterior columns were tested under the fluctuating axial force. Based on the results of the experiments, the effects of the lap splice and axial force on the column performance are evaluated.

  • PDF