• Title/Summary/Keyword: Spectral Collocation Method

Search Result 26, Processing Time 0.019 seconds

TIME DISCRETIZATION WITH SPATIAL COLLOCATION METHOD FOR A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL

  • Kim Chang-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권1호
    • /
    • pp.19-38
    • /
    • 2006
  • We analyze the spectral collocation approximation for a parabolic partial integrodifferential equations(PIDE) with a weakly singular kernel. The space discretization is based on the spectral collocation method and the time discretization is based on Crank-Nicolson scheme with a graded mesh. We obtain the stability and second order convergence result for fully discrete scheme.

  • PDF

PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION

  • Kim, Sang Dong;Hessari, Peyman;Shin, Byeong-Chun
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.595-612
    • /
    • 2014
  • The spectral collocation method for a second order elliptic boundary value problem on a domain ${\Omega}$ with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] ${\times}$ [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.

ON CLENSHAW-CURTIS SPECTRAL COLLOCATION METHOD FOR VOLTERRA INTEGRAL EQUATIONS

  • CHAOLAN, HUANG;CHUNHUA, FANG;JIANYU, WANG;ZHENGSU, WAN
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.983-993
    • /
    • 2022
  • The main purpose of this paper is to solve the second kind Volterra integral equations by Clenshaw-Curtis spectral collocation method. First of all, we can transform the integral interval from [-1, x] to [-1, 1] through a simple linear transformation, and discretize the integral term in the equation by Clenshaw-Curtis quadrature formula to obtain the collocation equations. Then we provide a rigorous error analysis for the proposed method. At last, several numerical example are used to verify the results of theoretical analysis.

NUMERICAL SOLUTIONS OF BURGERS EQUATION BY REDUCED-ORDER MODELING BASED ON PSEUDO-SPECTRAL COLLOCATION METHOD

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권2호
    • /
    • pp.123-135
    • /
    • 2015
  • In this paper, a reduced-order modeling(ROM) of Burgers equations is studied based on pseudo-spectral collocation method. A ROM basis is obtained by the proper orthogonal decomposition(POD). Crank-Nicolson scheme is applied in time discretization and the pseudo-spectral element collocation method is adopted to solve linearlized equation based on the Newton method in spatial discretization. We deliver POD-based algorithm and present some numerical experiments to show the efficiency of our proposed method.

SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Yang, Yin;Chen, Yanping;Huang, Yunqing
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.203-224
    • /
    • 2014
  • We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Fredholm-Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

RICHARDSON EXTRAPOLATION OF ITERATED DISCRETE COLLOCATION METHOD FOR EIGENVALUE PROBLEM OF A TWO DIMENSIONAL COMPACT INTEGRAL OPERATOR

  • Panigrahi, Bijaya Laxmi;Nelakanti, Gnaneshwar
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.567-584
    • /
    • 2014
  • In this paper, we consider approximation of eigenelements of a two dimensional compact integral operator with a smooth kernel by discrete collocation and iterated discrete collocation methods. By choosing numerical quadrature appropriately, we obtain convergence rates for gap between the spectral subspaces, and also we obtain superconvergence rates for eigenvalues and iterated eigenvectors. We then apply Richardson extrapolation to obtain further improved error bounds for the eigenvalues. Numerical examples are presented to illustrate theoretical estimates.

부분 내재적 체비셰브 스펙트럴 기법을 이용한 주기적인 비정상 유동 해석 (Partially Implicit Chebyshev Pseudo-spectral Method for a Periodic Unsteady Flow Analysis)

  • 임동균
    • 항공우주시스템공학회지
    • /
    • 제14권3호
    • /
    • pp.17-23
    • /
    • 2020
  • 본 연구는 Chebyshev collocation operator를 지배 방정식의 시간 미분항에 적용하여 비정상 유동해석을 해석할 수 있는 기법을 개발한 논문이다. 시간적분으로 유속항은 내재적으로 처리하였으며 시간 미분항은 Chebyshev collocation operator을 적용하여 원천항 형태로 외재적으로 처리하여 부분 내재적 시간적분법을 적용하였다. 본 연구의 방법을 검증하기 위해 1차원 비정상 burgers 방정식과 2차원 진동하는 airfoil에 적용하였으며 기존의 비정상 유동 주파수 해석기법과 시험 결과를 비교하여 나타내었다. Chebyshev collocation operator는 주기적인 문제와 비주기적인 문제에 대해서 시간 미분항을 처리할 수 있으므로 추후 비주기적인 문제에 적용할 예정이다.

Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening

  • Ghannadpour, S. Amir M.;Kiani, Payam
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.557-568
    • /
    • 2018
  • An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

편심환내의 회전 유동 (Rotating Flows in Eccentric Cylinders)

  • 심우건
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.9-16
    • /
    • 1997
  • A numerical method based on the spectral collocation method is developed for the steady rotating flows in eccentric annulus. Steady flows between rotating cylinders are of interest on lubrication in large rotating machinery. Steady rotating flow is generated by the rotating inner cylinder with constant angular velocity. The governing equations for laminar flow are simplified from Navier-Stokes equations by neglecting the non-linear convection terms. Integrating the pressure round the rotating cylinder based on the half Sommerfeld method, the load on the cylinder is evaluated with eccentricity. The attitude angle and Sommerfeld variable are calculated from the load. It is found that those values are influenced by the eccentricity. The attitude and Sommerfeld reciprocal are decreased with eccentricity. As expected, the effect of the annular gap ratio on them is negligible.

  • PDF

Stratified Steady and Unsteady Two-Phase Flows Between Two Parallel Plates

  • Sim Woo-Gun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.125-132
    • /
    • 2006
  • To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated.