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RICHARDSON EXTRAPOLATION OF ITERATED DISCRETE

COLLOCATION METHOD FOR EIGENVALUE PROBLEM OF

A TWO DIMENSIONAL COMPACT INTEGRAL OPERATOR

BIJAYA LAXMI PANIGRAHI∗, GNANESHWAR NELAKANTI

Abstract. In this paper, we consider approximation of eigenelements of
a two dimensional compact integral operator with a smooth kernel by dis-
crete collocation and iterated discrete collocation methods. By choosing
numerical quadrature appropriately, we obtain convergence rates for gap

between the spectral subspaces, and also we obtain superconvergence rates
for eigenvalues and iterated eigenvectors. We then apply Richardson ex-
trapolation to obtain further improved error bounds for the eigenvalues.

Numerical examples are presented to illustrate theoretical estimates.
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1. Introduction

Consider the following integral operator K defined on X = L∞(D) by

Ku(s, t) =
∫ b

a

∫ d

c

K(s, t, x, y)u(x, y) dx dy, (s, t) ∈ D, (1)

where kernel K(., ., ., .) ∈ C(D) × C(D), D = [a, b] × [c, d] ⊂ R2 is a given
rectangular domain. Then K is a compact linear operator on X.

We are interested in the following eigenvalue problem: find u ∈ X and λ ∈
C− {0} such that Ku = λu, ∥u∥ = 1. (2)

Many practical problems in science and engineering are formulated as eigen-
value problems (2) of compact linear integral operators K (cf.,[3]). For many
years, numerical solution of eigenvalue problems have attracted much attention.
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During the last some years, significant work has been done in the numerical anal-
ysis of the one-dimensional eigenvalue problem for the compact integral operator
K. The Galerkin, petrove-Galerkin, collocation, Nyström and degenerate kernel
methods are the commonly used methods for the approximation of eigenele-
ments of the compact integral operator K. The analysis for the convergence of
Galerkin, petrove-Galerkin, collocation, Nyström and degenerate kernel meth-
ods for the one dimensional eigenvalue problems are well documented in ([1], [3],
[12], [13], [14]). By replacing the various integrals appearing in these methods
by numerical quadrature leads to discrete methods. In ([9]) discrete and iterated
discrete Galerkin methods and in ([4]) discrete and iterated discrete collocation
methods were discussed for the one dimensional eigenvalue problem (2) with a
smooth kernel.

In [15], we were interested to solve the eigenvalue problem of a two dimen-
sional compact integral operator with smooth kernel taking the help of discrete
Galerkin and iterated discrete Galerkin methods and obtained the error bounds
for approximated eigenelements. Further, to improve the convergence rates for
the eigenvalues, we derived an asymptotic expansion for the iterated discrete
Galerkin operator and then using Richardson extrapolation we improved the
convergence rates for the eigenvalues. Meanwhile, to do so, we replace the vari-
ous integrals arise in L2 inner product, when the projection is an orthogonal pro-
jection and the two-dimensional integral operator K by using Gauss quadrature
rule, which improves the computational cost to generate the matrix eigenvalue
problem. To avoid such, discrete collocation method receive favorable attention
due to lower computational cost in generating matrix eigenvalue problem. In
fact, in comparison to discrete Galerkin and discrete petrove Galerkin meth-
ods, the discrete collocation method requires much less computational effort in
evaluation of its entries defined by integrals. This motivates us to do this work.

In section-2, we develop discrete collocation, iterated discrete collocation
methods and theoretical frame work for the eigenvalue problem using inter-
polatory projections. In section-3, we discuss the convergence rates for the ap-
proximated eigenfunctions to the exact eigenfunctions. In section-4, we discuss
Richardson extrapolation for eigenvalue problem to improve convergence rates.
In section-5, we present numerical results, which agree with the theoretical re-
sults. Throughout the paper, we assume c as the generic constant.

2. Discrete and Iterated discrete collocation methods

Consider the following compact integral operator K defined on X = L∞(D) by

Ku(s, t) =
∫ b

a

∫ d

c

K(s, t, x, y)u(x, y) dx dy, (s, t) ∈ D, (3)

where the kernel K(., ., ., .) ∈ C(D)× C(D), D = [a, b]× [c, d] ⊂ R2.
We are interested in the eigenvalue problem (2). Assume λ be the eigenvalue

of K with algebraic multiplicity m and ascent ℓ. Let Γ ⊂ ρ(K) be a simple closed
rectifiable curve such that σ(K)∩ intΓ = {λ}, 0 ̸= intΓ, where intΓ denotes the



Richardson extrapolation of iterated discrete collocation method 569

interior of Γ. Now we describe the collocation method for the eigenvalue problem
(2).

Let ∆
(1)
M and △(2)

N be the uniform partitions of finite intervals [a, b] and [c, d],

respectively, defined by ∆
(1)
M : a = x0 < x1 < · · · < xM = b and ∆

(2)
N : c = y0 <

y1 < · · · < yN = d with h = xm+1 − xm = b−a
M and k = yn+1 − yn = d−c

N , for
m = 0, 1, 2, . . . ,M − 1 and n = 0, 1, 2, . . . , N − 1. These partitions define a grid

for D, ∆MN = ∆
(1)
M × ∆

(2)
N = {(xm, yn) : 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1}.

Set I
(1)
0 = [x0, x1], I

(1)
m = (xm, xm+1], I

(2)
0 = [y0, y1], I

(2)
n = (yn, yn+1] and

Imn = I
(1)
m × I

(2)
n , m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1. For any given

positive integer p and q, let Pp−1,q−1 denotes the space of polynomials of degree
p− 1 in x and q − 1 in y, then for 0 ≤ m ≤M − 1, 0 ≤ n ≤ N − 1,

XMN = S
(−1)
p−1,q−1(∆MN ) = {u : u |Imn= um,n ∈ Pp−1,q−1},

is the finite element space of dimensionMNpq, which is the tensor product space

of univariate spline spaces S
(−1)
p−1 (∆

(1)
M ) on [a, b] and S

(−1)
q−1 (∆

(2)
N ) on [c, d]. The

use of superscript (-1) in the notation for the above finite element space is to
emphasize that it is not a subspace of C(D).

Let sm,i = xm + τih and tn,j = yn + θjk, be the collocation points on
[xm, xm+1], m = 0, 1, . . . ,M −1, and [yn, yn+1],n = 0, 1, . . . , N −1, respectively,
where τ0, τ1, . . . , τp−1 and θ0, θ1, . . . , θq−1 are zeros of Legendre polynomials of
degree p and q, respectively on [0, 1].

Let Ph : L∞([a, b]) → S
(−1)
p−1 (△(1)

M ) and Pk : L∞([c, d]) → S
(−1)
q−1 (△(2)

N ) be the

interpolatory projection with respect to the nodes {sm,i} and {tn,j}, respectively,
that is, for u ∈ L∞([a, b]),

Phu ∈ S
(−1)
p−1 (△(1)

M ) and Phu(sm,i) = u(sm,i) (4)

Pku ∈ S
(−1)
q−1 (△(2)

N ) and Pku(tn,j) = u(tn,j), (5)

then there holds([3]), ∥Ph∥∞ ≤ c1 < ∞, ∥Pk∥∞ ≤ c2 < ∞ and for any u ∈
Cp[a, b] and u ∈ Cq[c, d], there holds,

∥(I − Ph)u∥ ≤ c hp∥u(p)∥∞, and ∥(I − Pk)u∥ ≤ c kq∥u(q)∥∞. (6)

Note that

I − PhPk = (I − Ph) + (I − Pk)− (I − Ph)(I − Pk). (7)

As a consequence, from (6), it follows that

∥(I − PhPk)u∥∞ ≤ ∥(I − Ph)u∥∞ + ∥(I − Pk)u∥∞ + (1 + c1)∥(I − Pk)u∥∞
→ 0, as h, k → 0. (8)

Let ϕim, ψjn denote the Lagrange polynomials of degree p− 1 and q − 1 on the
subintervals [xm, xm+1], m = 0, 1, . . . ,M − 1 and [yn, yn+1], n = 0, 1, . . . , N − 1
respectively, where, j = 0, 1, . . . q − 1, i = 0, 1, . . . , p − 1. Then it follows
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that S
(−1)
p−1 (△(1)

M ) = span{ϕim} and S
(−1)
q−1 (△(2)

N ) = span{ψjn}. Then we have

XMN = span{ϕimψjn}.
Now the collocation method for solving the eigenvalue problem (2) is defined

as follows: find uhk ∈ XMN , ∥uhk∥ = 1 and λhk ∈ C− {0} such that

Kuhk(sm′,i′ , tn′,j′) = λhkuhk(sm′,i′ , tn′,j′), (9)

for i′ = 0, 1, . . . p−1, m′ = 0, 1, . . .M −1, j′ = 0, 1, . . . q−1, n′ = 0, 1, . . . N −1.

Using uhk =
M−1∑
m=0

N−1∑
n=0

p−1∑
i=0

q−1∑
j=0

αijϕimψjn ∈ XMN , the equation (9) can be con-

verted to the matrix eigenvalue problem. The iterated eigenvector is defined by
u′hk = 1

λhk
Kuhk.

To solve the matrix eigenvalue problem and the iterated eigenvector, we need
to evaluate various integrals arising from the integral operator K. In practice,
numerical quadrature has to be used to compute these integrals. This leads to
discrete methods. To do this, let for f, g ∈ C[0, 1],

R(f) =
k′−1∑
i=0

wif(ci) ≈
∫ 1

0

f(s) ds, (10)

S(g) =
l′−1∑
j=0

w̃jg(dj) ≈
∫ 1

0

g(t) dt (11)

be the numerical quadrature with weights wi > 0, w̃j > 0 and quadrature points
ci, i = 0, 1, . . . , k′ − 1, dj , j = 0, 1, . . . , l′ − 1, chosen as Gauss points in [0, 1]
which satisfy 0 < c0 < c1 < · · · < ck′−1 < 1 and 0 < d0 < d1, . . . , < dl′−1 < 1
having degree of precision 2k′ − 1, 2l′ − 1, respectively. Then the composite
Gauss quadrature rule for any f ∈ C([a, b]), g ∈ C([c, d]) is given by

Rh(f) = h
M−1∑
m=0

k′−1∑
i=0

wif(xm,i) ≈
∫ b

a

f(s) ds, (12)

Sk(g) = k
N−1∑
n=0

l′−1∑
j=0

w̃jg(yn,j) ≈
∫ d

c

g(t) dt, (13)

where xm,i = xm+cih, i = 0, 1, . . . , k′−1, and yn,j = yn+djk, j = 0, 1 . . . , l′−1,
be the quadrature points on the subintervals [xm, xm+1], m = 0, 1, . . . ,M − 1
of [a, b] and [yn, yn+1], n = 0, 1, . . . , N − 1 of [c, d], respectively. Now using (12)
and (13), we define the composite quadrature rule for g ∈ C(D) by

RhSk(g) = hk
k′−1∑
i=0

l′−1∑
j=0

M−1∑
m=0

N−1∑
n=0

wiw̃jg(xm,i, yn,j) ≈
∫ b

a

∫ d

c

g(s, t) ds dt.
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Let Khk : X → X be the Nyström operator defined for u ∈ X is

Khku(s, t) = hk
M−1∑
m=0

N−1∑
n=0

k′−1∑
i=0

l′−1∑
j=0

wiw̃jK(s, t, xm,i, yn,j)u(xm,i, yn,j). (14)

Now replacing the integral operator K by the Nyström operator (14), the matrix
eigenvalue problem leads to the discrete collocation method,

M−1∑
m=0

N−1∑
n=0

p−1∑
i=0

q−1∑
j=0

βijKhkϕim(sm′,i′)ψjn(tn′,j′)

= λ̃hk

M−1∑
m=0

N−1∑
n=0

p−1∑
i=0

q−1∑
j=0

βijϕim(sm′,i′)ψjn(tn′,j′),

i′ = 0, 1, . . . p− 1, m′ = 0, 1, . . .M − 1, j′ = 0, 1, . . . q − 1, n′ = 0, 1, . . . N − 1.

(15)

By solving this discrete matrix eigenvalue problem (15), we find the eigenvalue

λ̃hk ∈ C−{0} and β = [βij , i = 0, 1 . . . , p− 1, j = 0, 1, . . . , q− 1]. Then the dis-

crete collocation eigenvector is defined by, ũhk =

M−1∑
m=0

N−1∑
n=0

p−1∑
i=0

q−1∑
j=0

βijϕimψjn ∈

XMN . The discrete matrix eigenvalue problem (15) can be written in operator
form as

PhPkKhkũhk = λ̃hkũhk. (16)

Next we define the iterated discrete collocation eigenvector by ũ′hk = 1
λ̃hk

Khkũhk

Clearly we see that PhPkũ
′
hk = ũhk and

KhkPhPkũ
′
hk = λ̃hkũ

′
hk. (17)

This is the iterated discrete collocation method.
Next we discuss the convergence of approximated eigenvalues and eigenvectors

to the exact eigenvalues and eigenvectors of the integral operator K. To do this,
first we set the following notations: SetK(s, t, x, y) = Ks,t(x, y). ForK(., ., ., .) ∈
C(i,j)(D)× C(i′,j′)(D), denote

D(i,j)Ku(s, t) =
∫ b

a

∫ d

c

∂i+j

∂si∂tj
K(s, t, ξ, η)u(ξ, η) dξ dη,

D(i,j,i′,j′)K(s, t, ξ, η) =
∂i+j+i′+j′

∂si∂tj∂ξi′∂ηj′
K(s, t, ξ, η).

For any α, β, γ, δ ∈ N, we set ∥u∥α,β,∞ =

α∑
i=0

β∑
j=0

∥u(i,j)∥∞

∥K∥α,β,γ,δ,∞ =

α∑
i=0

β∑
j=0

γ∑
i′=0

δ∑
j′=0

∥D(i,j,i′,j′)K(s, t, ξ, η)∥∞,
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Then we have

∥D(i,j)(Ku)∥∞ ≤ (b− a)(d− c)∥K∥i,j,0,0,∞∥u∥∞, (18)

and ∥Ku∥α,β,∞ =
α∑

i=0

β∑
j=0

∥D(i,j)(Ku)∥∞. (19)

In the following theorem we give the error bounds for the Nyström operator.

Theorem 2.1 ([15]). Let K be an integral operator with a kernel K(., ., ., .) ∈
C(2k′,2l′)(D) × C(2k′,2l′)(D) and Khk be the Nyström operator defined by (14),

then for any u ∈ C(2k′,2l′)(D), the following holds

∥(K −Khk)u∥∞ ≤ c (h2k
′
+ k2l

′
)∥u∥2k′,2l′,∞, (20)

where c is independent of h and k.

Definition 2.2 ([1]). Let X be a Banach space and, T and Tn are bounded
linear operators from X into X. Then {Tn} is said to be ν-convergent to T , if

∥Tn∥ ≤ c, ∥(Tn − T )T ∥ → 0, ∥(Tn − T )Tn∥ → 0 as n→ ∞.

We quote the following lemma which is useful in proving the existence of
eigenvalue and eigenvectors in discrete and iterated discrete collocation methods.

Lemma 2.3 ([2]). Let X be a Banach space and S ⊂ X is a relatively compact
set. Assume that T and Tn are bounded linear operators from X into X satisfying
∥Tn∥ ≤ c for all n ∈ N, and for each x ∈ S, ∥Tnx−T x∥ → 0 as n→ ∞, where
c is a constant independent of n. Then ∥Tnx−T x∥ → 0 uniformly for all x ∈ S.

Theorem 2.4. PhPkKhk and KhkPhPk are ν-convergent to K.

Proof. SinceKhk, Ph and Pk are uniformly bounded, it follows that ∥PhPkKhk∥∞ ≤
∥Ph∥∞∥Pk∥∞∥Khk∥∞ < ∞ and ∥KhkPhPk∥∞ ≤ ∥Khk∥∞∥Ph∥∞∥Pk∥∞ < ∞.
Now using (8) and Theorem 2.1, we see that

∥(PhPkKhk −K)u∥∞ ≤ ∥Ph∥∞∥Pk∥∞∥(Khk −K)u∥∞ + ∥(PhPk − I)Ku∥∞ → 0,

This shows that PhPkKhk point wise converges to K.
Let B = {x ∈ X : ∥x∥ ≤ 1} be a closed unit ball in X. Since K is a compact

operator, the set S = {Kx : x ∈ B} is a relatively compact set in X. By Lemma
2.3, we have

∥(PhPkKhk −K)K∥∞ = sup{∥(PhPkKhk −K)Ku∥∞ : u ∈ B}
= sup{∥(PhPkKhk −K)u∥∞ : u ∈ S} → 0 as h, k → 0.

Since PhPk is bounded and Khk compact, S′ = {PhPkKhkx : x ∈ B} is a
relatively compact set. Thus

∥(PhPkKhk −K)PhPkKhk∥∞ = sup{∥(PhPkKhk −K)PhPkKhku∥∞ : u ∈ B}
= sup{∥(PhPkKhk −K)u∥∞ : u ∈ S′} → 0,

as h, k → 0. Combining all these results leads to the first result that PhPkKhk

is ν-convergent to K. The proof of KhkPhPk is ν-convergent to K follows by
similar steps as in above. �
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Since PhPkKhk and KhkPhPk are ν-convergent to K, the spectrum of both
PhPkKhk andKhkPhPk inside Γ consists ofm eigenvalues say λ̃hk,1, λ̃hk,2, . . . , λ̃hk,m

counted accordingly to their algebraic multiplicities inside Γ with ascent ℓ (cf.,
[3, 14]). Let

ˆ̃
λhk =

λ̃hk,1 + λ̃hk,2 + · · ·+ λ̃hk,m
m

,

denote their arithmetic mean and we approximate λ by
ˆ̃
λhk. Let

PS = − 1

2πi

∫
Γ

(K − zI)−1dz, (21)

be the spectral projections of K associated with their corresponding spectra

inside Γ. Similarly, PS
hk and P̃S

hk be the spectral projections of PhPkKhk and

KhkPhPk, respectively. Let R(PS), R(PS
hk) and R(P̃S

hk) be the ranges of the

spectral projections PS , PS
hk and P̃S

hk, respectively.
To discuss the closeness of eigenfunctions of the integral operator K and those

of the approximate operators, we recall (cf., [3]) the concept of gap between the
spectral subspaces. For nonzero closed subspaces Y1 and Y2 of X, let

δ(Y1,Y2) = sup{dist(y,Y2) : y ∈ Y1, ∥y∥∞ = 1},

then
δ̂(Y1,Y2) = max{δ(Y1,Y2), δ(Y2,Y1)},

is known as the gap between Y1 and Y2.
We quote the following three Lemmas, which give the error bounds for the
eigenelements.

Theorem 2.5 ([1], [13]). Let PhPkKhk be ν-convergent to K. Then for suffi-
ciently large M,N , there exists a constant c independent of M,N , we have

δ̂(R(PS
hk),R(PS)) ≤ c∥(K − PhPkKhk)K∥∞,

Theorem 2.6 ([13], [16]). Let KhkPhPk is ν-convergent to K. Then for suffi-
ciently large M,N , there exists a constant c independent of M,N , we have

δ̂(R(P̃S
hk),R(PS)) ≤ c∥(K −KhkPhPk)K∥∞.

Theorem 2.7 ([1], [13]). If KhkPhPk is ν-convergent to K then for sufficiently
large M,N , there exists a constant c independent of M,N such that for j =
1, 2....,m,

|λ− λ̂hk| ≤ c ∥(K −KhkPhPk)K∥∞,
|λ− λhk,j |ℓ ≤ c ∥(K −KhkPhPk)K∥∞.
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3. Convergence Rates

In this section we discuss the convergence rates for the approximated eigen-
values and eigenvectors to the exact eigenvalues and exact eigenvectors of the
integral operator K. To do this, first we prove the following Lemma.

Lemma 3.1. Let Khk be the Nyström operator defined by (14) with a kernel

K(., ., ., .) ∈ C(2k′,2l′)(D)×C(2k′,2l′)(D), k′ ≥ p, l′ ≥ q. Then for u ∈ C(2p,2q)(D),
the following hold

∥(I − PhPk)u∥∞ ≤ cmax{hp, kq}∥u∥p,q,∞, (22)

∥Khk(I − PhPk)u∥∞ ≤ cmax{h2p, k2q}∥u∥2p,2q,∞. (23)

Proof. Using the estimates (6), we have

∥(I − Ph)u∥∞ ≤ chp∥u(p,0)∥∞, ∥(I − Pk)u∥∞ ≤ ckq∥u(0,q)∥∞,
and

∥(I − Ph)(I − Pk)u∥∞ ≤ chp∥((I − Pk)u)
(p,0)∥∞ ≤ c hpkq∥u(p,q)∥∞.

Combining these estimates with the identity (7), proof of (22) follows.

To prove the estimate (23), let us denote H(t) =

p−1∏
i′=0

(t − τi′) and H̃(t) =

q−1∏
j′=0

(t − θj′). Since H(t) and H̃(t) are orthogonal polynomials of degree p and

q, respectively, and the numerical quadratures defined by (10) and (11) have
degree of precision 2k′ and 2l′, respectively, it follows that, for k′ ≥ p and l′ ≥ q,

R(tµH(t)) =

k′−1∑
i=0

wic
µ
i H(ci) =

∫ 1

0

tµH(t)dt = 0, µ = 0, 1, . . . , p− 1, (24)

S(tνH̃(t)) =

l′−1∑
j=0

wjd
ν
j H̃(dj) =

∫ 1

0

tνH̃(t)dt = 0, ν = 0, 1, . . . , q − 1. (25)

Since Ph is the interpolatory projection interpolating at u(s, t) in the first vari-
able s at the points sm,0, sm,1, . . . , sm,p−1 in the subintervals [xm, xm+1], m =
0, 1, . . . ,M − 1, we have for s ∈ [xm, xm+1], t ∈ [c, d],

(I − Ph)u(s, t) = hpH

(
s− xm
h

)
δ(p,0)u(s, t), (26)

where δ(p,0)u(s, t) = [sm,0, sm,1, . . . , sm,p−1, s; t]u be the Newton divided differ-
ence of u in first variable. Similarly, since Pk is the interpolatory projection inter-
polating at u(s, t) in the second variable t at the points tn,0, tn,1, . . . , tn,q−1 in the
subintervals [yn, yn+1], n = 0, 1, . . . , N − 1, we have for t ∈ [yn, yn+1], s ∈ [a, b],

(I − Pk)u(s, t) = kqH̃

(
t− yn
k

)
δ(0,q)u(s, t), (27)
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where δ(0,q)u(s, t) = [s; tn,0, tn,1, . . . , tn,q−1, t]u be the Newton divided difference
of u in second variable. Now using the identity (7), we have

Khk(I − PhPk)u = Khk(I − Ph)u+Khk(I − Pk)u−Khk(I − Ph)(I − Pk)u. (28)

For the first term in the above, for any (s, t) ∈ D, using (26), we obtain

Khk(I − Ph)u(s, t) = hp+1k

k′−1∑
i=0

l′−1∑
j=0

M−1∑
m=0

N−1∑
n=0

wiw̃jH(ci)gi(xm,i, yn,j), (29)

where gi(xm,i, yn,j) = Ks,t(xm,i, yn,j)δ
(p,0)u(xm,i, yn,j). The Taylor’s expansion

of gi(xm,i, yn,j) = gi(xm + cih, yn,j) at the point xm is given by

gi(xm,i, yn,j) =

p−1∑
µ=0

1

µ!
hµci

µg
(µ,0)
i (xm, yn,j) +

1

p!
hpcpi g

(p,0)
i (ξm, yn,j), (30)

where ξm ∈ [xm, xm+1]. Using (30) in the estimate (29), we obtain

Khk(I − Ph)u(s, t)

=

p−1∑
µ=0

1

µ!
hµk

l′−1∑
j=0

N−1∑
n=0

w̃jh
p
M−1∑
m=0

h
( k′−1∑

i=0

wici
µH(ci)

)
g
(µ,0)
i (xm, yn,j)

+h2p
1

p!
k

N−1∑
n=0

l′−1∑
j=0

w̃j

M−1∑
m=0

h
( k′−1∑

i=0

wic
p
iH(ci)

)
g
(p,0)
i (ξm, yn,j). (31)

Using the estimate (24) in (31), it follows that

|Khk(I − Ph)u(s, t)| ≤ c h2p max
ξ∈[a,b]

|g(p,0)i (ξ, yn,j)| ≤ c h2p∥K∥0,0,p,0,∞∥u∥2p,0,∞.

On the similar mechanism, for the second term in (28), we can prove that

|Khk(I − Pk)u(s, t)| ≤ ck2q∥K∥0,0,0,q,∞∥u∥0,2q,∞. (32)

Let δ(p,q)u(s, t) = [sm,0, sm,1, . . . , sm,p−1, s; tn,0, tn,1, . . . , tn,q−1, t]u be p and qth
Newton divided difference of u in first and second variables, respectively. Then
we have

(I − Ph)(I − Pk)u(s, t) = hpkqH
(s− xm

h

)
H̃
( t− yn

k

)
δ(p,q)u(s, t). (33)

Using this in the third term of (28), we have

Khk(I − Ph)(I − Pk)u(s, t)

= hk
k′−1∑
i=0

l′−1∑
j=0

M−1∑
m=0

N−1∑
n=0

hpkqwiw̃jH(ci)H̃(dj) gi,j(xm,i, yn,j),

where gi,j(xm,i, yn,j) = Ks,t(xm,i, yn,j)δ
(p,q)u(xm,i, yn,j). The Taylor’s series

expansion for gi,j(xm,i, yn,j) = gi,j(xm + cih, yn + djk) at the point xm and yn
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is given by

gi,j(xm,i, yn,j) =

r1−1∑
µ=0

1

µ!

µ∑
ν=0

(
µ

ν

)
(cih)

ν(djk)
µ−νg

(ν,µ−ν)
i,j (xm, yn)

+
1

r1!

r1∑
ν=0

(
r1
ν

)
(cih)

ν(djk)
r1−νg

(ν,r1−ν)
i,j (ξ, η), (34)

where r1 = p+ q. Using (34) in the above equation and by adjustment with the
the estimates (24) and (25), we obtain

|Khk(I − Ph)(I − Pk)u(s, t)| ≤ c h2pk2q max
(ξ,η)∈D

|g(p,q)i,j (ξ, η)|

≤ c h2pk2q∥K∥0,0,p,q,∞∥u∥2p,2q,∞, (35)

where c =
(
p+q
p

)
(b − a)(d − c)R(tpH(t))S(tqH̃(t)) is a constant independent of

h and k. Combining the estimates (28), (32) and (35), the result (23) follows.
This completes the proof. �

Theorem 3.2. Let K be a compact integral operator with a kernel K(., ., ., .) ∈
C(2k′,2l′)(D) × C(2k′,2l′)(D), k′ ≥ p, l′ ≥ q and Khk be the Nyström operator
defined by (14). Then the following hold

∥(K −Khk)K∥∞ = O(max{h2k
′
, k2l

′
}), (36)

∥(I − PhPk)K∥∞ = O(max{hp, kq}), (37)

∥Khk(I − PhPk)K∥∞ = O(max{h2p, k2q}). (38)

Proof. Replacing u by Ku in (20), and using the estimate (19), we obtain

∥(K −Khk)Ku∥∞ ≤ c (h2k
′
+ k2l

′
)∥Ku∥2k′,2l′,∞

≤ c (h2k
′
+ k2l

′
)∥K∥2k′,2l′,0,0,∞∥u∥∞,

where c is a constant independent of h and k. This completes the proof of (36).
Now replacing u by Ku in (22) and using the estimate (19), we see that

∥(I − PhPk)Ku∥∞ ≤ c max{hp, kq}∥Ku∥p,q,∞ ≤ c max{hp, kq}∥K∥p,q,0,0∞∥u∥∞,

this proves the estimate (37). Again replacing u by Ku in (23), then we obtain

∥Khk(I − PhPk)Ku∥∞ ≤ c max{h2p, k2q}∥K∥2p,2q,0,0∞∥u∥∞,

this proves the estimate (38). �

Theorem 3.3. Assume that all the conditions of theorem 3.2 hold. Then the
following hold

∥(K − PhPkKhk)K∥∞ = O(max{hmin{p,2k′}, kmin{q,2l′}}), (39)

∥(K −KhkPhPk)K∥∞ = O(max{hmin{2p,2k′}, kmin{2q,2l′}}). (40)
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Proof. Since

∥(K − PhPkKhk)K∥∞ ≤ ∥(I − PhPk)K∥∞∥K∥∞ + ∥Ph∥∞∥Pk∥∞∥(K −Khk)K∥∞,
∥(K −KhkPhPk)K∥∞ ≤ ∥(K −Khk)K∥∞ + ∥Khk(I − PhPk)K∥∞,

the proof follows from the above Theorem 3.2. �

In the following Theorem we give the superconvergence results for the eigen-
values and eigenvectors.

Theorem 3.4. Suppose K is a compact integral operator with a kernel function
K(., ., ., .) ∈ C(2k′,2l′)(D) × C(2k′,2l′)(D), k′ ≥ p, l′ ≥ q, and suppose that λ be
the eigenvalue of K with algebraic multiplicity m and ascent ℓ. Let {KhkPhPk}
and {PhPkKhk} be a sequence of bounded operators on X, which converges to K
in ν−convergence. Then

δ̂(R(PS
hk),R(PS)) = O(max{hmin{p,2k′}, kmin{q,2l′}}),

δ̂(R(P̃S
hk),R(PS)) = O(max{hmin{2p,2k′}, kmin{2q,2l′}}).

In particular, for any ũhk ∈ R(PS
hk) and ũ

′
hk ∈ R(P̃S

hk), we have

∥ũhk − PS ũhk∥∞ = O(max{hmin{p,2k′}, kmin{q,2l′}}),
∥ũ′hk − PS ũ′hk∥∞ = O(max{hmin{2p,2k′}, kmin{2q,2l′}}).

For j = 1, 2, . . . ,m,

|λ− ˆ̃
λhk| = O(max{hmin{2p,2k′}, kmin{2q,2l′}}),

|λ− λ̃hk,j |ℓ = O(max{hmin{2p,2k′}, kmin{2q,2l′}}).

Proof. The proof follows directly using the Theorems 2.5, 2.6, 2.7 and 3.3. �

Remark: From Theorem 3.4, we observe that discrete collocation eigenvectors
converges with the order of convergence O(max{hmin{p,2k′}, kmin{q,2l′}}) where
as iterated discrete collocation eigenvectors and eigenvalues converges with the
order of convergence O(max{hmin{2p,2k′}, kmin{2q,2l′}}). This shows that iterated
discrete eigenvectors gives superconvergence results over the discrete collocation
eigenvectors. By choosing the degree of precisions of the numerical quadrature
rules sufficiently large, i.e., 2k′ ≥ 2p and 2l′ ≥ 2q on [a, b] and [c, d], respectively,
we obtain the superconvergence results for the eigenvalues and eigenvectors in
the discrete collocation and iterated discrete collocation methods.

4. Richardson Extrapolation

In this section, we derive an asymptotic error expansions (cf., [10], [11]) for the
iterated discrete collocation operator KhkPhPk and an asymptotic error expan-
sion of arithmetic mean of approximate eigenvalues. We then apply Richardson
extrapolation to obtain improved error bounds for the eigenvalues.
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Lemma 4.1. (Euler-MacLaurin summation formulae)([7]).
Let f(x, y) ∈ Cr+1(D), 0 ≤ τ ≤ 1, 0 ≤ θ ≤ 1. Then

hk
M−1∑
m=0

N−1∑
n=0

f(xm + τh, yn + θk)

=
r∑

a=0

r−a∑
b=0

hakb
Ba(τ)

a!

Bb(θ)

b!

[
∂a+b−2

∂xa−1∂yb−1
f(x, y)

]b, d

x=a,y=c

+O(hr+1 + kr+1)

where Bi(t) are Bernoulli polynomials of degree i.

Theorem 4.2 ([15]). Let K be a compact integral operator with a kernel K(., ., ., .) ∈
C(D) × Cr+1(D) and Khk be the Nyström operator defined by (14), then there
holds

Khk −K =

[ r2 ]∑
i=k

h2iD2i +

[ r2 ]∑
j=l

k2jE2j +
[ r2 ]−l∑
i=k

[ r2 ]−i∑
j=l

h2ih2jF2i,2j +O(hr+1 + kr+1),

where D2i, E2j , and F2i,2j are bounded linear operators independent of h and k.

Lemma 4.3 ([7]). Assume that u(x, y) ∈ Cr+1(D). Let Ph and Pk be the
interpolatory projections defined by (4) and (5), respectively. Then for any
(x, y) ∈ Imn, the following holds

(I − PhPk)u(x, y) =
r∑

µ=p

hµu(µ,0)(x, y)Φµ(τ) +
r∑

ν=q

kνu(0,ν)(x, y)Ψν(θ)

−
r−q∑
µ=p

r−µ∑
ν=q

hµkνu(µ,ν)(x, y)Φµ(τ)Ψν(θ) +O(hr+1 + kr+1),

where

Φµ(τ) =

p−1∏
i=0

(τ − τi)[τ0, τ1, . . . , τp−1, x]
(.− τ)µ

µ!
, (41)

Ψν(θ) =

q−1∏
j=0

(θ − θj)[θ0, θ1, . . . , θq−1, x]
(.− θ)ν

ν!
. (42)

Proposition 4.4. Assume that the kernel K(., ., ., .) ∈ C(r+1)(D) × C(r+1)(D)
and u ∈ Cr+1(D), then the following holds

Khk(I − PhPk) =

[ r2 ]∑
i=p

h2iR2i,0 +

[ r2 ]∑
j=q

k2jS0,2j +

[ r2 ]−l′∑
i=p

[ r2 ]−i∑
j=l′

h2ik2jR2i,2j

+

[ r2 ]−k′∑
i=q

[ r2 ]−i∑
j=k′

h2ik2jS2i,2j −
[ r2 ]−q∑
i=p

[ r2 ]−i∑
j=q

h2ik2jT2i,2j +O(hr+1 + kr+1),
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where R2i,2j ,S2i,2j and T2i,2j are bounded linear operators on Cr+1(D).

Proof. Using the definition of Khk defined by (14) and the Lemma 4.3, we have

Khk(I − PhPk)u(s, t)

= hk
M−1∑
m=0

N−1∑
n=0

k′−1∑
i=0

l′−1∑
j=0

wiw̃jKs,t(xm,i, yn,j)×

[ r∑
µ=p

hµu(µ,0)(xm,i, yn,j)Φµ(ci) +

r∑
ν=q

kνu(0,ν)(xm,i, yn,j)Ψν(dj)

−
r−q∑
µ=p

r−µ∑
ν=q

hµkνu(µ,ν)(xm,i, yn,j)Φµ(ci)Ψν(dj) +O(hr+1 + kr+1)

]
= I1 + I2 − I3 +O(hr+1 + kr+1). (43)

Now we consider I1,

I1 =
r∑

µ=p

hµ
k′−1∑
i=0

wiΦµ(ci)
l′−1∑
j=0

w̃j

[
hk

M−1∑
m=0

N−1∑
n=0

Ks,t(xm,i, yn,j)u
(µ,0)(xm,i, yn,j)

]
.

Using Euler-Maclaurin summation formula in I1, we obtain

I1 =

r∑
µ=p

r−µ∑
a=0

r−a−µ∑
b=0

hµ+a

a!

kb

b!
Aµ,aS(Bb)

[
∂a+b−2

∂xa−1∂yb−1
Ks,t(x, y)u

(µ,0)(x, y)

]
+O(hr+1 + kr+1), (44)

where Aµ,a =
k′−1∑
i=0

wiΦµ(ci)Ba(ci) and S(Bb) is the numerical quadrature of Ba

defined as in (11). Since τ0, τ1, . . . , τp−1 are symmetric points in the interval
[0, 1], i.e., τj = 1− τp−1−j for 0 ≤ j ≤ p− 1, we have

[τ0, τ1, . . . , τp−1, 1− ci]
(.− (1− ci))

µ

µ!
= (−1)µ−p[τ0, τ1, . . . , τp−1, ci]

(.− ci)
µ

µ!
,

and

p−1∏
j=0

(1− ci − τj) = (−1)p
p−1∏
j=0

(ci − τj).

Using these estimates we obtain Φµ(1−ci) = (−1)µΦµ(ci), i = 0, 1, 2, . . . , k′−1.
Also note that Ba(ci) = (−1)aBa(1 − ci), ci = 1 − ck′−1−i and wk′−i−1 =
wi, for 0 ≤ i ≤ k′ − 1. Hence we have

Aµ,a =

k′−1∑
i=0

wiΦµ(ci)Ba(ci) = (−1)µ+a
k′−1∑
i=0

wi Φµ(ci)Ba(ci) = (−1)µ+aAµ,a.
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From this, it follows that Aµ,a = 0, when µ + a = odd. Since the quadrature

rule (10) is exact for polynomial of degree less than 2k′ and

p−1∏
j=0

(ci − τj) is

orthogonal to all polynomial of degree less than p and [τ0, τ1, . . . , τp−1, ci]
(.−ci)

µ

µ!

is a polynomial of degree µ− p, then for µ+ a < 2p, k′ ≥ p, we have

Aµ,a =
k′−1∑
i=0

wiΦµ(ci)Ba(ci) =

∫ 1

0

p−1∏
j=0

(t− τj)[τ0, τ1, . . . , τp−1, t]
(.− t)µ

µ!
Ba(t) = 0,

and A0,0 =
∫ 1

0
Φ0(t)B0(t)dt =

∫ 1

0
−1.dt = −1. Thus we obtain

Aµ,a =

 −1, if µ = a = 0,
0, if 1 ≤ µ+ a ≤ 2p− 1,
0, if µ+ a = odd.

(45)

Since dj , j = 0, 1, . . . , l′ − 1 are the Gauss points in the interval (0, 1) and
the quadrature rule (3) is an symmetric quadrature rule, we have dl′−j−1 =
1 − dj and w̃j = w̃l′−j−1 for j = 0, 1, . . . , l′ − 1. Noting that the Bernoulli
polynomials have the property that Bb(1− d) = (−1)bBb(d), we have

S(Bb) =

l′−1∑
j=0

w̃l′−j−1Bb(1− dl′−j−1) = (−1)b
l′−1∑
j=0

w̃jBb(dj) = (−1)bS(Bb).

From this, it follows that S(Bb) is zero when b is odd. Also we have S(B0) = 1.
Now since the degree of precision of this quadrature rule (10) is 2l′−1, it follows
that for 1 ≤ b ≤ 2l′ − 1,

S(Bb) =
l′−1∑
j=0

w̃jBb(dj) =

∫ 1

0

Bb(t) dt =

[
1

b+ 1
Bb+1(t)

]1
t=0

= 0.

Thus we have

S(Bb) =

 1, if b = 0,
0, if 1 ≤ b ≤ 2l′ − 1,
0, if b = odd.

(46)

Combining the estimates (46) and (45) with (44) we obtain

I1 =

[ r2 ]∑
i=p

h2iR2i,0u+

[ r2 ]−l′∑
i=p

[ r2 ]−i∑
j=l′

h2ik2jR2i,2ju+O(hr+1 + kr+1),

where,

R2i,2ju =
∑

(µ,a)∈Z(i)

Aµ,a

a!

S(B2j)

2j!

[
∂a+2j−2

∂xa−1∂y2j−1
Ks,t(x, y)u

(µ,0)(x, y)

]b, d

x=a, y=c

,

Z(i) =

{
(µ, a), p ≤ µ ≤ r, 0 ≤ a ≤ r − µ, µ+ a = 2i

}
.
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Similarly we can prove that

I2 =

[ r2 ]∑
j=q

k2jS0,2ju+

[ r2 ]−q∑
i=k′

[ r2 ]−i∑
j=q

h2ik2jS2i,2ju+O(hr+1 + kr+1),

where,

S2i,2ju =
∑

(ν,b)∈Z(j)

R(B2i)

2i!

Bν,b

b!

[
∂2i+b−2

∂x2i−1∂yb−1
Ks,t(x, y)u

(0,ν)(x, y)

]b, d

x=a, y=c

,

Z(j) =

{
(ν, b), q ≤ ν ≤ r, 0 ≤ b ≤ r − ν, ν + b = 2j

}
.

Similarly for I3, we can prove that

I3 =

[ r2 ]−q∑
i=p

[ r2 ]−i∑
j=q

h2ik2jT2i,2ju+O(hr+1 + kr+1)

where,

T2i,2ju =
∑

(µ,a,ν,b)∈Z(i,j)

Aµ,a

a!

Bν,b

b!

[
∂a+b−2

∂xa−1∂yb−1
Ks,t(x, y)u

(µ,ν)(x, y)

]b, d

x=a, y=c

,

Z(i, j) =

{
(µ, a, ν, b), p ≤ µ ≤ r − q, 0 ≤ a ≤ r − µ− ν,

q ≤ ν ≤ r − µ, 0 ≤ b ≤ r − a− µ− ν, µ+ a = 2i, ν + b = 2j

}
.

Now combining the estimates for I1, I2 and I3 with (43), we obtain the following
asymptotic expansion This completes the proof. �

Theorem 4.5. Let K be a compact integral operator with the kernel K(., ., ., .) ∈
Cr+1(D)× Cr+1(D) with p = k′ and q = l′. Then the following holds

K −KhkPhPk =

[ r2 ]∑
i=p

h2iU2i +

[ r2 ]∑
j=q

k2jV2j +

[ r2 ]−q∑
i=p

[ r2 ]−i∑
j=q

h2ik2jW2i,2j

+O(hr+1 + kr+1),

where U2i,V2j and W2i,2j are bounded linear operators on Cr+1(D).

Proof. Combining Theorems 4.4 and 4.2, we have

K −KhkPhPk = K −Khk +Khk −KhkPhPk

=

[ r2 ]∑
i=p

h2iU2i +

[ r2 ]∑
j=q

k2jV2j +

[ r2 ]−l′∑
i=p

[ r2 ]−i∑
j=l′

h2ik2jW2i,2j +O(hr+1 + kr+1),

where U2i = R2i,0−D2i, V2j = S0,2j−E2j , and W2i,2j = R2i,2j+S2i,2j−T2i,2j−
F2i,2j are bounded linear operators on Cr+1(D). This completes the proof. �
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In rest of the paper, we choose the domain D = [a, b]× [a, b] and the partition

△M,N = △(1)
M × △(1)

M , i.e., h = k. Also we choose the numerical quadratures
(10) and (11) to be same, i.e., k′ = l′. Then we have the following corollary.

Corollary 4.6. Let Khk be the Nyström operator defined by (14) with p = q =
k′ = l′. Assume that the kernel K(., ., ., .) ∈ C2p+2(D) × C2p+2(D). Then the
following holds

K −KhkPhPk = h2pC2p +O(h2p+2),

where C2p = U2p + V2p is a bounded linear operators on C2p+2(D).

Richardson Extrapolation For Eigenvalue problem: By the similar way as
followed in [15], we obtain the following theorem which gives an asymptotic error
expansion of the arithmetic mean of eigenvalues by iterated discrete collocation
method.

Theorem 4.7 ([15]). Let λ be the eigenvalue of K with algebraic multiplicity m

and
ˆ̃
λhk be the arithmetic mean of the eigenvalues λ̃hk,j , j = 1, 2, ...,m. Then

the following holds

ˆ̃
λhk − λ =

1

m
h2ptrace(Q2p) +O(h2p+2), (47)

where Q2p = C2pPS −KU2p is a bounded linear operator independent of h.

According to the asymptotic expansion (47), the Richardson extrapolation for
eigenvalue approximation should be the following. We first divide each subinter-

val with respect to the partitions of ∆
(1)
M and ∆

(2)
M into two halves which makes

up a new partitions denoted by ∆
(1)
2M and ∆

(2)
2M ,

∆
(1)
2M = ∆

(2)
2M : a = x0 < x 1

2
< x1 < · · · < xM− 1

2
< xM = b.

Here h = k = 1
2M and D = [a, b] × [a, b]. We then have following asymptotic

expansion for eigenvalue approximation with respect to this new partitions,

ˆ̃
λh/2, k/2 = λ+

1

m

(h
2

)2p

trace(Q2p) +O(h2p+2). (48)

From the asymptotic expansions (47) and (48), the Richardson extrapolation for
the eigenvalue approximation is defined by

ˆ̃
λEhk =

22p
ˆ̃
λh/2, k/2 − ˆ̃

λhk

22p − 1
. (49)

In the following Theorem we give the superconvergence rates for the eigenvalue
approximation using Richardson extrapolation.

Theorem 4.8. Assume that conditions of Theorem 4.7 hold and the Richardson

extrapolation
ˆ̃
λEhk is defined by (49). Then the following error estimate holds

|ˆ̃λEhk − λ| = O(h2p+2).
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5. Numerical Example

Consider the eigenvalue problem (2), for the integral operator K (3) for various
smooth kernels K(s, t, x, y).

Let XMM be the space of piecewise constant functions (p=q=1) on [0, 1]×[0, 1]

with respect to the initial uniform partitions ∆
(1)
M = ∆

(2)
M : 0 < 1

M < 2
M < · · · <

M−1
M < 1, ∆MN = ∆

(1)
M × ∆

(2)
M = {( i

M , j
M ) : 0 ≤ i ≤ M, 0 ≤ j ≤ M}

with h = k = 1
M . We choose numerical quadrature as the one-point composite

Gaussian quadrature formula which is exact for all polynomials of degree less
than 2, that is k = l = 1.
The quadrature points and weights are given by

xm,i = ym,i =
2m+ 1

2M
, i = 1, m = 0, 1, . . . ,M − 1

and wi = w̃i =
1
M , i = 1, 2, . . .M, respectively.

For different kernels and for different values of M , we compute the discrete

collocation eigen vector ũhk, iterated eigen vector ũ′hk and eigenvalue
ˆ̃
λhk, and

approximated eigenvalue in Richardson extrapolation
ˆ̃
λEhk. Denote

|λ− ˆ̃
λhk| = O(hα), ∥ũhk − PS ũhk∥∞ = O(hβ),

∥ũ′hk − PS ũ′hk∥∞ = O(hγ), |λ− ˆ̃
λEhk| = O(hδ),

where h = k = 1
M is the step length. For M = 2, 4, 8, 16, we compute α, β, γ

and δ which are listed in the following Table.
Since k′ = l′ = 1, we get the theoretical convergence of the order of eigenvector

is 1, the orders of the iterated eigenvector and eigenvalues are 2, and the order of
eigenvalue in Richardson extrapolation is 4. In the following Table 1 and Table
2, the numerical results agrees with the theoretical results.

Example. K(s, t, x, y) = s sin(t) + xey, [a, b] = [0, 1], [c, d] = [0, 1].

Table 1: Eigenvector error bounds

M ∥ũhk − PS ũhk∥∞ ∥ũ′hk − PS ũ′hk∥∞ β γ
2 1.955787e-01 1.738201e-02 * *
4 9.343799e-02 4.254548e-03 1.065668 2.030517
8 4.617936e-02 1.058051e-03 1.016761 2.007596
16 2.302235e-02 2.641661e-04 1.004212 2.001891

Table 2: Eigenvalue error bounds

M |λ− ˆ̃
λhk| α |λ− ˆ̃

λEhk| δ
2 1.955475e-02 * * *
4 4.858064e-03 2.009065 4.083223e-05 *
8 1.212553e-03 2.002332 2.616340e-06 3.964086
16 3.030157.e-04 2.000584 1.636705e-07 3.998683
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