• 제목/요약/키워드: Space Launch System

검색결과 427건 처리시간 0.03초

A CONCEPTUAL DESIGN FOR ELECTRICAL GROUNDING ARCHITECTURE OF KOREAN SPACE LAUNCH VEHICLE

  • Kim Kwang-Soo;Lee Soo-Jin;Ma Keun-Soo;Shin Myoung-Ho;Hwang Seung-Hyun;Ji Ki-Man;Chung Eui-Seung
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.231-234
    • /
    • 2004
  • Electrical grounding is defined as referencing an electrical circuit or a common reference plane for preventing shock hazards and for enhancing operability of the circuit and EMI control. In order to realize the best electrical grounding system of korean space launch vehicle, we should design the electrical grounding architecture of korean space launch vehicle of system-level at the earliest point in design procedure. To minimize the electrical grounding loop and the unnecessary electromagnetic interference or radiation among the electronic subsystems, we should establish the electrical grounding rules of the all electrical interfaces. The electrical interfaces among the electronic subsystems are generally classified into the electrical power and signal interfaces. Because of using the primary and secondary power system architecture in the korean space launch vehicle system such as the common space launch vehicle systems, we need to establish the electrical grounding rules between the primary and secondary power system. We also need to establish the electrical signal grounding interface rules among the electronic subsystems. In this paper, we will describe the grounding schemes of the common space launch vehicle system and propose a conceptual design for the electrical grounding architecture of korean space launch vehicle system.

  • PDF

우주발사체 개발사업의 비용 추정 현황 및 사례 (Application of Cost Estimation to Space Launch Vehicle Development Program)

  • 유일상;서윤경;이준호;오범석
    • 산업경영시스템학회지
    • /
    • 제30권3호
    • /
    • pp.165-173
    • /
    • 2007
  • A space launch vehicle system represents a typical example of large-scale multi-disciplinary systems, consisting of subsystems such as mechanical structure, electronics, control, telecommunication, propulsion, material engineering etc. A lot of cost is required to develop the launch vehicle system. A precise planning of R&D cost is very essential to make a success of the launch vehicle development program. Especially in the early development phase of a new space launch vehicle system, cost estimation techniques and analogy from past similar development data are very useful methods to estimate a development cost of the launch vehicle system. Now Korea Aerospace Research Institute is in charge of the KSLV-I (Korea Space Launch Vehicle-I) Program that is a part of Korea National Space program. KSLV-I Program is a national undertaking to develop launch capabilities to deliver science satellites of a 100kg-class into a low earth orbit. It is hereafter, going to plan to develop a new korean space launch vehicle. In this paper, first the development costs of well-known launch vehicles in the world are presented to provide a reference to make a development plan of a new launch vehicle. Second this paper introduces the present status of cost estimation applications at NASA. Finally this paper presents the results from application of a TRANSCOST, a parametric cost model, to derive a cost estimate of a new launch vehicle development, as an example.

KSLV-I 조립콤플렉스 시스템 설계 (KSLV-I Assembly Complex System Design)

  • 진승보;박정주
    • 시스템엔지니어링학술지
    • /
    • 제2권1호
    • /
    • pp.37-41
    • /
    • 2006
  • The KSLV-I satellite launch vehicle will be launched in a space center currently under construction. The Space Center which is an advance post base of space development of Korea is located on Oenaro island in Kohung, South Cholla Province. A Ground Complex of the Space Center consists of an AC(Assembly Complex), a LC(Launch Complex), and a MCC(Mission Control Center). Assembly and test facilities are located in the AC in which stage assembly, integrated assembly, check-up, certification test, and pre-launch test are made effectively. A launch pad, fuel supply facilities, a launch control center and associated supporting facilities are located in the LC, and the MCC has control over the space center. These ground complex facilities have diverse forms of an interface with mechanical device, electric device, and etc. These should also provide optimum condition and performance during launch operation processes of the launch vehicle. This paper introduces the result of R&D for the AC of the ground complex performed during system design period.

  • PDF

RELIABILITY DEMONSTRATION OF PROPULSION SYSTEM OF SPACE LAUNCH VEHICLE

  • Cho Sang-Yeon;Kim Yong-Wook;Oh Seung Hyub;Park Chan-Bin
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.341-343
    • /
    • 2004
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF

발사체 열제어/화재안전 시스템 설계 및 시험 (Design and Test of Thermal Control and Fire Safety System for Space Launch Vehicle)

  • 고주용;오택현;이준호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1006-1010
    • /
    • 2017
  • 본 논문은 발사체의 지상대기 및 운용 중 격실 내부의 열제어 및 화재/폭발 방지를 위해서 적용되는 열제어/화재안전계에 대한 설계 및 시험에 대해서 기술한다. 고려된 시스템은 한국형발사체 개발의 일환으로 진행되고 있는 시험발사체의 열제어/화재안전 시스템으로 이 시스템은 나로호의 경험을 토대로 고압 시스템을 적용한다. 고압 및 저압 시스템의 선정은 발사대의 가스공급 설비 및 발사체의 특성을 고려해서 선정하며 이에 따라 시스템의 구성도 달라진다. 결과적으로 개발된 시스템은 시험을 통해서 초기의 설계 조건을 만족하는 결과를 얻을 수 있음이 확인되었으며, 이러한 시스템은 한국형발사체의 개발에 그대로 확장되어 적용될 예정이다.

  • PDF

발사체 추진제 탱크 수위 측정 및 제어 시스템 기초연구 (Fundamental Research on the Measurement and Control System of Level Sensor for Launch Vehicle Propellant Tanks)

  • 신동순;한상엽;조인현;이응신
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.393-396
    • /
    • 2008
  • Propellant consumption control for space launch vehicle can be achieved by propellant utilization system (PUS) and tank depletion system (TDS). In the course of developing new space launch vehicles, the main target of design is on reducing of space launch vehicle weight, which results in increasing both specific impulse and payload weight. The weights of space launch vehicles are generally allocated to structure, propulsion system, and propellants loaded. The quantity of propellants filled in propellant tanks may be estimated with the propellants actually consumed by propulsion system to complete its mission and the propellants left on-board at the time of engine shut-off. To minimize the remaining quantity of propellants on-board the supplying propellants' O/F ratio should be controlled from the certain time before engine shutdown. To control an O/F ratio, a control system, which accurately measures and compares the remainder of propellants in tanks and pipes, should be needed. This paper solely dedicates its contents to explore the merits and demerits of various level sensor, which is one of the important elements for PUS and TDS, and the transmission and control of signals within space launch vehicle.

  • PDF

우주발사체 시스템 개발에 있어서의 SE관리기법 적용 (Application of SE Management Techniques for space Launch System Development)

  • 조미옥;조병규;오범석;박정주;조광래
    • 시스템엔지니어링워크숍
    • /
    • 통권4호
    • /
    • pp.90-94
    • /
    • 2004
  • System engineering(SE) management techniques applied for space launch system development are introduced to assess the current status and address the effwctiveness of these techniques. Management plans and guides are prepared for the work breakdown structure , data, comfiguration, interface control, Quality assurance, procurement, reliability, risk and verification/validation . Further improvement is required for the system engineering management plan(SEMP) to merge the international cooperation into current engineering managment system.

  • PDF

정지궤도위성 발사위치와 궤도투입에 관한 고찰 (Geostationary Satellite Launch Site and Orbit Injection)

  • 김동선
    • 항공우주시스템공학회지
    • /
    • 제18권3호
    • /
    • pp.27-33
    • /
    • 2024
  • 누리호의 성공과 차세대 우주발사체의 개발 목표를 통하여 국내 정지궤도위성 발사능력은 1톤에서 3.7톤으로 향상될 것으로 기대되며 화성, 소행성 등의 우주탐사에도 1톤 이상의 실질적인 능력을 제공해 줄 수 있을 것으로 예측된다. 고흥 우주발사장은 태양 동기궤도 소형위성에 최적화되어 있으며 타국의 영공을 침범하지 않아야 된다는 필수적인 전제조건으로 인하여 정지궤도위성 발사장으로는 다소 부족한 면이 존재한다. 초기 궤도 투입상태로부터 궤도면 회전을 위한 에너지의 증가가 필수적이며 운용 측면에서의 복잡성과 함께 경제성의 감소요인이 된다. 그러므로 차세대 우주발사체의 개발과 병행하여 지구 적도부근의 해외 지상발사장 또는 해상발사지점의 획득과 최적화된 정지궤도위성 투입에 관한 궤도 구성에 관한 연구가 계속되어야 한다.

물 분사 냉각시스템을 이용한 발사대 화염유도로의 냉각특성 (The Cooling Characteristics of a Gas Deflector Using Water Spray Cooling System in Launch Pad)

  • 이광진;정용갑;조남경;남중원;정일형;라승호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.756-762
    • /
    • 2011
  • 화염유도로 냉각시스템은 발사체 엔진의 점화 시 발생하는 충격파를 감쇠하는 중요한 역할을 수행한다. 또한 이 시스템은 발사체의 구조와 페이로드를 손상시킬 수 있는 커다란 진동을 감소시키기도 한다. 나로우주센터의 발사대에 설치된 화염유도로 냉각시스템은 발사체 엔진의 화염에 직접 물을 분사시키도록 구축되었으며, 나로호의 비행시험 결과는 화염유도로를 냉각하는 관점에서 이 방법이 기능상 우수함을 보여 주었다.

  • PDF

우주발사체 개발사업의 위험관리 프로세스 (A Process of the Risk Management for a Space Launch Vehicle R&D Project)

  • 조동현;유일상
    • 시스템엔지니어링학술지
    • /
    • 제12권2호
    • /
    • pp.19-27
    • /
    • 2016
  • Many countries concentrated on the space developments to enhance the national security and the people's quality of life. A space launch vehicle for accessing the space is a typical large complex system that is composed of the high-technology like high-performance, high-reliability, superhigh-pressure, etc. The project developing large complex system like space launcher is mostly conducted in the uncertain environment. To achieve a goal of the project, its success probability should be enhanced consistently by reducing its uncertainty during the life cycle: it's possible to reduce the project's uncertainty by performing the risk management (RM) that is a method for identifying and tracing potential risk factors in order to eliminate the risks of the project. In this paper, we introduce the risk management (RM) process applied for a Space Launch Vehicle R&D Project.