• 제목/요약/키워드: Soliton

검색결과 159건 처리시간 0.021초

A NOTE ON ALMOST RICCI SOLITON AND GRADIENT ALMOST RICCI SOLITON ON PARA-SASAKIAN MANIFOLDS

  • De, Krishnendu;De, Uday Chand
    • Korean Journal of Mathematics
    • /
    • 제28권4호
    • /
    • pp.739-751
    • /
    • 2020
  • The object of the offering exposition is to study almost Ricci soliton and gradient almost Ricci soliton in 3-dimensional para-Sasakian manifolds. At first, it is shown that if (g, V, λ) be an almost Ricci soliton on a 3-dimensional para-Sasakian manifold M, then it reduces to a Ricci soliton and the soliton is expanding for λ=-2. Besides these, in this section, we prove that if V is pointwise collinear with ξ, then V is a constant multiple of ξ and the manifold is of constant sectional curvature -1. Moreover, it is proved that if a 3-dimensional para-Sasakian manifold admits gradient almost Ricci soliton under certain conditions then either the manifold is of constant sectional curvature -1 or it reduces to a gradient Ricci soliton. Finally, we consider an example to justify some results of our paper.

RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD

  • Patra, Dhriti Sundar
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1315-1325
    • /
    • 2019
  • The purpose of this article is to study the Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold. First, we prove that if a para-Kenmotsu metric represents a Ricci soliton with the soliton vector field V is contact, then it is Einstein and the soliton is shrinking. Next, we prove that if a ${\eta}$-Einstein para-Kenmotsu metric represents a Ricci soliton, then it is Einstein with constant scalar curvature and the soliton is shrinking. Further, we prove that if a para-Kenmotsu metric represents a gradient Ricci almost soliton, then it is ${\eta}$-Einstein. This result is also hold for Ricci almost soliton if the potential vector field V is pointwise collinear with the Reeb vector field ${\xi}$.

YAMABE AND RIEMANN SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS

  • Chidananda, Shruthi;Venkatesha, Venkatesha
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.213-228
    • /
    • 2022
  • In the present paper, we aim to study Yamabe soliton and Riemann soliton on Lorentzian para-Sasakian manifold. First, we proved, if the scalar curvature of an 𝜂-Einstein Lorentzian para-Sasakian manifold M is constant, then either 𝜏 = n(n-1) or, 𝜏 = n-1. Also we constructed an example to justify this. Next, it is proved that, if a three dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton for V is an infinitesimal contact transformation and tr 𝜑 is constant, then the soliton is expanding. Also we proved that, suppose a 3-dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton, if tr 𝜑 is constant and scalar curvature 𝜏 is harmonic (i.e., ∆𝜏 = 0), then the soliton constant λ is always greater than zero with either 𝜏 = 2, or 𝜏 = 6, or λ = 6. Finally, we proved that, if an 𝜂-Einstein Lorentzian para-Sasakian manifold M represents a Riemann soliton for the potential vector field V has constant divergence then either, M is of constant curvature 1 or, V is a strict infinitesimal contact transformation.

ALMOST HERMITIAN SUBMERSIONS WHOSE TOTAL MANIFOLDS ADMIT A RICCI SOLITON

  • Gunduzalp, Yilmaz
    • 호남수학학술지
    • /
    • 제42권4호
    • /
    • pp.733-745
    • /
    • 2020
  • The object of the present paper is to study the almost Hermitian submersion from an almost Hermitian manifold admits a Ricci soliton. Where, we investigate any fibre of such a submersion is a Ricci soliton or Einstein. We also get necessary conditions for which the base manifold of an almost Hermitian submersion is a Ricci soliton or Einstein. Moreover, we obtain the harmonicity of an almost Hermitian submersion from a Ricci soliton to an almost Hermitian manifold.

비선형 증폭 루프에서의 평균 솔리톤의 안정성 (Stability of average soliton propagation in a nonlinear amplifying loop mirror)

  • 심숙이;이성서;김광훈;김기옥
    • 한국광학회지
    • /
    • 제12권6호
    • /
    • pp.507-510
    • /
    • 2001
  • 간단한 비선형 증폭 루프에서의 평균 솔리톤 전송의 안정성을 비선형 Schroedinger방정식에 기초한 수치해석법을 이용하여 솔리톤 주기에 대한 증폭 주기의 비율과 루프에서의 erbium doped광섬유의 길이 비율을 변화시켜가며 계산하고 그 결과를 분석하였다. 계산 결과 루프에서의 erbium doped광섬유의 길이 비율이 작을 경우 증폭 주기가 솔리톤 주기에 비해 많이 작아야 한다는 기존의 평균 솔리톤 형성 조건이 완화됨을 알 수 있었다.

  • PDF

3-Dimensional Trans-Sasakian Manifolds with Gradient Generalized Quasi-Yamabe and Quasi-Yamabe Metrics

  • Siddiqi, Mohammed Danish;Chaubey, Sudhakar Kumar;Ramandi, Ghodratallah Fasihi
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.645-660
    • /
    • 2021
  • This paper examines the behavior of a 3-dimensional trans-Sasakian manifold equipped with a gradient generalized quasi-Yamabe soliton. In particular, It is shown that α-Sasakian, β-Kenmotsu and cosymplectic manifolds satisfy the gradient generalized quasi-Yamabe soliton equation. Furthermore, in the particular case when the potential vector field ζ of the quasi-Yamabe soliton is of gradient type ζ = grad(ψ), we derive a Poisson's equation from the quasi-Yamabe soliton equation. Also, we study harmonic aspects of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds sharing a harmonic potential function ψ. Finally, we observe that 3-dimensional compact trans-Sasakian manifold admits the gradient generalized almost quasi-Yamabe soliton with Hodge-de Rham potential ψ. This research ends with few examples of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds.

SOME RESULTS IN η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD

  • Mondal, Chandan Kumar;Shaikh, Absos Ali
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1279-1287
    • /
    • 2019
  • The main purpose of the paper is to prove that if a compact Riemannian manifold admits a gradient ${\rho}$-Einstein soliton such that the gradient Einstein potential is a non-trivial conformal vector field, then the manifold is isometric to the Euclidean sphere. We have showed that a Riemannian manifold satisfying gradient ${\rho}$-Einstein soliton with convex Einstein potential possesses non-negative scalar curvature. We have also deduced a sufficient condition for a Riemannian manifold to be compact which satisfies almost ${\eta}$-Ricci soliton.

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Biswas, Gour Gopal;De, Uday Chand
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.825-837
    • /
    • 2022
  • We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.

The Geometry of 𝛿-Ricci-Yamabe Almost Solitons on Paracontact Metric Manifolds

  • Somnath Mondal;Santu Dey;Young Jin Suh;Arindam Bhattacharyya
    • Kyungpook Mathematical Journal
    • /
    • 제63권4호
    • /
    • pp.623-638
    • /
    • 2023
  • In this article we study a 𝛿-Ricci-Yamabe almost soliton within the framework of paracontact metric manifolds. In particular we study 𝛿-Ricci-Yamabe almost soliton and gradient 𝛿-Ricci-Yamabe almost soliton on K-paracontact and para-Sasakian manifolds. We prove that if a K-paracontact metric g represents a 𝛿-Ricci-Yamabe almost soliton with the non-zero potential vector field V parallel to 𝜉, then g is Einstein with Einstein constant -2n. We also show that there are no para-Sasakian manifolds that admit a gradient 𝛿-Ricci-Yamabe almost soliton. We demonstrate a 𝛿-Ricci-Yamabe almost soliton on a (𝜅, 𝜇)-paracontact manifold.