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ABSTRACT. The object of the present paper is to study almost Ricci solitons and gradient
almost Ricci solitons in 3-dimensional f-Kenmotsu manifolds.

1. Introduction

The study of almost Ricci soliton was introduced by Pigola et. al. [18], where
essentially they modified the definition of Ricci soliton by adding the condition on
the parameter A to be a variable function, more precisely, we say that a Riemannian
manifold (M™, g) admits an almost Ricci soliton, if there exists a complete vector
field V, called potential vector field and a smooth soliton function A : M™ — R
satisfying

1
(1.1) Ric+ ii’vg: g,

where Ric and £ stand, respectively, for the Ricci tensor and Lie derivative. We
shall refer to this equation as the fundamental equation of an almost Ricci soliton
(M™, g,V,\). It will be called expanding, steady or shrinking, respectively, if A < 0,
A=0or A > 0. Otherwise it will be called indefinite. When the vector field V'
is gradient of a smooth function f : M™ — R the metric will be called gradient
almost Ricci soliton. In this case the preceding equation becomes

(1.2) Ric+ V2f = \g,
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where V2 f stands for the Hessian of f. Sometimes classical theory of tensorial calcu-
lus is more convenient to make computations. Then, we can write the fundamental
equation in this language as follows:

(1.3) Rij +ViVf = Agij-

Moreover, if the vector field X is trivial, or the potential f is constant, the
almost Ricci soliton will be called trivial, otherwise it will be a non-trivial almost
Ricci soliton. We notice that when n > 3 and Xis a Killing vector field an almost
Ricci soliton will be a Ricci soliton, since in this case we have an Einstein manifold,
from which we can apply Schur’s lemma to deduce that A is constant. Taking into
account that the soliton function ) is not necessarily constant, certainly comparison
with soliton theory will be modified. In particular the rigidity result contained in
Theorem 1.3 of [18] indicates that almost Ricci solitons should reveal a reasonably
broad generalization of the fruitful concept of classical soliton. In fact, we refer the
reader to [18] to see some of this changes.

In the direction to understand the geometry of almost Ricci soliton, Barros and
Ribeiro Jr. proved in [2] that a compact gradient almost Ricci soliton with non-
trivial conformal vector field is isometric to a Euclidean sphere. In the same paper
they proved an integral formula for compact case, which was used to prove several
rigidity results, for more details see [2].

The existence of Ricci almost soliton has been confirmed by Pigola et. al. [18]

on some certain class of warped product manifolds. Some characterization of Ricci
almost soliton on a compact Riemannian manifold can be found in ([1], [2], [3]). It
is interesting to note that if the potential vector field V' of the Ricci almost soliton
(M,g,V,)) is Killing then the soliton becomes trivial, provided the dimension of
M > 2. Moreover, if V is conformal then M™ is isometric to Euclidean sphere
S™. Thus the Ricci almost soliton can be considered as a generalization of Einstein
metric as well as Ricci soliton.
In [6], authors studied Ricci solitons and gradient Ricci solitons on 3-dimensional
normal almost contact metric manifolds. In [10] authors studied compact Ricci soli-
ton. Beside these, A. Ghosh [12] studied K-contact and Sasakian manifolds whose
metric is gradient almost Ricci solitons. Conditions of K-contact and Sasakian
manifolds are more stronger than normal almost contact metric manifolds in the
sense that the 1-form 7 of normal almost contact metric manifolds are not contact
form. The Ricci soliton and gradient Ricci soliton have been studied by several
authors such as ([5], [7], [9]) and many others.

The present paper is organized as follows:

After preliminaries, in section 3 we study almost Ricci soliton in 3-dimensional
f-Kenmotsu manifolds. Finally, we consider gradient almost Ricci solitons in 3-
dimensional f-Kenmotsu manifolds.

2. Preliminaries

Let M be an almost contact manifold, i.e., M is a connected (2n+1)-dimensional
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differentiable manifold endowed with an almost contact metric structure (¢, &, 7, g)
[4]. As usually, denote by ® the fundamental 2-form of M, ®(X,Y) = g(X, ¢Y),
X,Y € x(M), x(M) being the Lie algebra of differentiable vector fields on M.

For further use, we recall the following definitions ([4], [11], [19]). The manifold
M and its structure (¢, &,n, g) is said to be:

(i) normal if the almost complex structure defined on the product manifold M xR
is integrable (equivalently [¢, ¢] + 2dn ® £ = 0),

(ii) almost cosymplectic if dn = 0 and d® = 0,

(iii) cosymplectic if it is normal and almost cosymplectic (equivalently, V¢ = 0,
V being covariant differentiation with respect to the Levi-Civita connection).

The manifold M is called locally conformal cosymplectic (respectively, almost
cosymplectic) if M has an open covering {U;} endowed with differentiable func-
tions o; : U; — R such that over each U; the almost contact metric structure
(¢, &ty me, 9¢) defined by

—20

Gr=0¢, & =¢e7E m=e 7, g=ce g

is cosymplectic (respectively, almost cosymplectic).

Olszak and Rosca [16] studied normal locally conformal almost cosymplectic
manifold. They gave a geometric interpretation of f-Kenmotsu manifolds and stud-
ied some curvature properties. Among others they proved that a Ricci symmetric
f-Kenmotsu manifold is an Einstein manifold.

By an f-Kenmotsu manifold we mean an almost contact metric manifold which
is normal and locally conformal almost cosymplectic.

Let M be a real (2n + 1)-dimensional differentiable manifold endowed with an
almost contact structure (¢, &, 7, g) satisfying

¢° = —I+n®¢ nE) =1,
(2.1) P = 0, nogp=0, n(X)=g(X,5),
9(¢X,9Y) = g(X,Y)—n(X)nY),

for any vector fields X,Y € x(M), where I is the identity of the tangent bundle
TM, ¢ is a tensor field of (1,1)-type, n is a 1-form, £ is a vector field and ¢ is a
metric tensor field. We say that (M, ¢,&,7n,9) is an f-Kenmotsu manifold if the
covariant differentiation of ¢ satisfies [15]:

(2.2) (Vx¢)(Y) = fg(oX,Y)E —n(Y)oX),

where f € C°°(M) such that df An = 0. If f = @ = constant # 0, then the manifold
is a a-Kenmotsu manifold [13]. 1-Kenmotsu manifold is a Kenmotsu manifold ([14],
[17]). If f = 0, then the manifold is cosymplectic [13]. An f-Kenmotsu manifold is
said to be regular if f2 + f’ # 0, where f' = £f.
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For an f-Kenmotsu manifold from (2.2) it follows that

(2.3) Vx& = X —n(X)¢}.
The condition df A = 0 holds if dim M > 5. In general this does not hold if
dim M = 3 [16].

In a 3-dimensional Riemannian manifold, we always have

RX.)Y)Z = g(Y,2)QX —g(X,2)QY +5(Y,2)X - S(X,2)Y
r

(2.4) —5 (Y. 2)X —g(X, Z)Y}.

In a 3-dimensional f-Kenmotsu manifold we have [16]
(25) R(X,Y)Z = (g L2 42f ) (X AY)Z

—(5 +3£2 4+ 3 ) M) EAY)Z +n(Y)(X A2},

(26)  SLY) = (5 + 7+ gXY) = (5 + 3£+ 3 m(X)n(Y),

where r is the scalar curvature of M and f' = &(f).
From (2.5), we obtain

(2.7) RX, V)¢ ==(f*+ [)In(¥)X = n(X)Y],

and (2.6) yields

(2.8) S(X,€6) = —2(f* + fn(X).

Example.([8]) We consider the three-dimensional manifold M = {(z,y,z) €
R3, z # 0}, where (x,y, z) are the standard coordinates in R3. The vector fields

, 0 , 0 )

€1 =2 — €y = 2 — €3 =
Ox’ Ay’ 0z

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

gler,ez) = glez,e3) =gler,e2) =0,

gler,er) = g(ea,e2) = g(es,e3) = 1.

Let n be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M). Let ¢ be the
(1,1) tensor field defined by ¢(e1) = —ea, ¢(ea) = €1, ¢d(ez) = 0.
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Then using linearity of ¢ and g we have
nles) =1, ¢*Z=—Z+n(Z)es,
g(¢Z7 ¢W) = g(Zv W) - U(Z)U(W)a
for any Z,W € x(M). Now, by direct computations we obtain
2

[e1,e2] =0, ez, e3] = T le1,e3] = e

The Riemannian connection V of the metric tensor g is given by the Koszul’s formula
which is
(2.9) 29(VxY, Z) = Xg(Y,2)+Yg(Z,X) - Zg(X,Y)
—9(X,[Y, Z]) = g(V. [X, Z]) + 9(Z,[X, Y]).
Using (2.9) we have
2g(Ve, e3,e1) = 29(—%61761),
29(Ve,e3,e2) =0 and  2¢g(V,, es, e3) =0.

Hence V., e3 = —%el. Similarly, V.,e3 = —%62 and V. es = 0. (2.9) further yields

2
Velez = 07 velel = 2633
2
Ve 2 = s Ve,e1 =0,
ve362 = 0, ve3€1 =0.

From the above it follows that the manifold satisfies Vx& = f{X — n(X)¢} for

¢ = e3, where f = —2. Hence we conclude that M is an f-Kenmotsu manifold.

Also f2+ f' #0. Hence M is a regular f-Kenmotsu manifold.
3. Almost Ricci Soliton

In this section we consider almost Ricci solitons on 3-dimensional f-Kenmotsu
manifolds. In particular, let the potential vector field V' be pointwise collinear with
&ie., V =0, where b is a function on M. Then from (1.1) we have

(3.1) g(Vxbe,Y) + g(Vybé, X) +25(X,Y) = 2)g(X,Y).

Using (2.3) in (3.1), we get

(32) 2fblg(X,Y) = n(X)n(Y)] + (Xb)n(Y) + (Y0)n(X) + 2S(X,Y) = 2Ag(X, Y).
Putting Y = ¢ in (3.2) and using (2.8) yields

(3.3) (Xb) + (€b)n(X) — 4(f* + f)n(X) = 22n(X).
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Putting X = ¢ in (3.3) we obtain
(3.4) =2+ f)+\
Putting the value of £b in (3.3) yields
(3.5) db=[\+2(f*+ f)n.
Applying d on (3.5) and using d* = 0, we get
(3.6) 0=d*=[A+2(f*+ f)]dn.
Taking wedge product of (3.6) with 7, we have
(3.7) N+2(f2+ f)nAdn=0.
Since n A dn # 0 in a 3-dimensional f-Kenmotsu manifold, therefore
(3.8) A2(f24+f)=0= = =2(f*+ ).
Using (3.8) in (3.5) gives db = 0 i.e., b =constant. Therefore from (3.2) we have
(3.9) S(X,Y) = (A= f)g(X, V) + fon(X)n(Y).

In view of (3.9) we can state the following:

Theorem 3.1. If in a 3-dimensional f-Kenmotsu manifold the metric g admits
almost Ricci soliton and V' is pointwise collinear with £, then V' is constant multiple
of & and the manifold is n-FEinstein of the form (3.9).

The converse of the above theorem is not true, in general. However if we take
f = constant, i.e., if we consider a 3-dimensional 7-Einstein f-Kenmotsu manifold,
then it admits a Ricci soliton. This can be proved as follows:

Let M be a 3-dimensional n-Einstein f-Kenmotsu manifold and V' = £. Then

(3.10) S(X,Y) = y9(X,Y) + n(X)n(Y),

where v and ¢ are certain scalars.
Now using (2.3)

(£eg)(X)Y) = g(Vx&Y)+9(VyvE X)
=2f{g(X,Y) = n(X)n(Y)}.
Therefore
(.fgg)(X,Y) + 2S(X, Y) - 2/\9(X7Y) = 2(f +7 - A)g(Xa Y)

(3.11) =2(f = o)n(X)n(Y).
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From equation (3.11) it follows that M admits a Ricci soliton (g, &, A) if f+y—A =0
and § = f = constant. From (3.10) we have using (2.8), —2f% = v + . Hence
v = —2f% — f = constant. Therefore A\ = (v + §) = constant. So we have the
following:

Theorem 3.2. If a 3-dimensional f-Kenmotsu manifold is n-FEinstein of the form
S =~g+ dn®mn, then a Ricci almost soliton (M, g,&, ) reduces to a Ricci soliton

(9,& (v +9)).
Now let V' = ¢. Then (3.1) reduces to

(3.12) (£eg)(X,Y) +25(X,Y) = 22g(X,Y).

Now, in view of (2.6) we have

(313)  (Leg(X,Y) = —2[(5+/+f)g(x.Y)

— (5372 +31 ) nCOmE)] +229(X. V).

(B12f{g(X.Y) —n(X)n(¥V)} = 229X Y) =2 |(5+ 2+ /) 9(X,Y)
- (% +3f% + 3f’) n(X)n(Y)} :

Putting X =Y = ¢ in (3.14) yields
(3.15) A=4(f2+ ).

Assuming that f = constant, we get f/ = £f = 0. This implies A\ = 4f2 = constant.
Thus we can state the following:

Theorem 3.3. If a 3-dimensional f-Kenmotsu manifold with f =constant admits
almost Ricci soliton then it reduces to a Ricci soliton.

4. Gradient Almost Ricci Soliton

This section is devoted to study 3-dimensional f-Kenmotsu manifolds admitting
gradient almost Ricci soliton. For a gradient almost Ricci soliton, we have

(4.1) VyDf =Y — QY,

where D denotes the gradient operator of g.
Differentiating (4.1) covariantly in the direction of X yields

(42) VXVYDf Zd/\(X)Y+/\VXy_ (VxQ)Y
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Similarly, we get

(4.3) VyVxDf =d\Y)X + A\Vy X — (VyQ)X.
and
(4.4) VixyDf = \X,Y] - Q[X,Y].

In view of (4.2),(4.3) and (4.4), we have

(4.5) R(X,Y)Df = VxVyDf-VyVxDf—VxyDf
= (VyQ)X — (VxQ)Y — (YN)X + (X\)Y.

We get from (2.6)

(4.6) Qv = (5+ 2+ )Y = (5+32 43 ) n(V)e,
Differentiating (4.6) covariantly in the direction of X and using (2.3), we get
vy = {GPeen by
an = {E2 e 50 UGV E+ X - 200008,

In view of (4.7), we get from (4.5)
R(X,Y)Df = {(Y’") LAY+ (Y f’)} {(X” LOF(XS) + (X f’)} y

- B2 worrn s} U I+ flx)Y = 206

Jr

{(XT) +6F(XF) +3( Xf’)}{fg (X, Y)E+ fn(Y)X = 2fn(X)n(Y)E}
(4.8) - (YN)X +(XNY.

This implies

g(R(X.EDf.€) = {(5’“)+2f<sf> (ff’)}n(X)

{ )

L2r(X) + <Xf’>}
(1.9) C(ENn(X) + (XN,

Also, we have from (2.5)

(4.10) 9(R(X,€)Df.€) = (f* + f)XS) = (€f)n(X)}.
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In view of (4.9) and (4.10) we obtain

4 0 - oy = {52 varen + e

{();7‘)

L2p(X )+ <Xf’>}
(4.11) — (X)) + (XN).

Assuming that the scalar curvature r and f are constants. Then it follows from
(4.11) that

(12) dX\ — (EXN)n = 0.
Applying d both sides of (12), we get

(13) €X = 0.
Using (13) in (12), we have

(14) d\=0.

This implies A = constant. Thus we can state the following:

Theorem 4.1. If a 3-dimensional f-Kenmotsu manifold admits gradient almost
Ricci soliton then it reduces to a Ricci soliton provided the scalar curvature r and
f are constants.
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