• 제목/요약/키워드: Solid Oxide Electrolyte

검색결과 281건 처리시간 0.028초

단실형 마이크로 고체 산화물 연료전지의 작동특성 전산모사 (Performance Modeling of Single-Chamber Micro SOFC)

  • 차정화;정찬엽;정용재;김주선;이종호;이해원
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.854-859
    • /
    • 2005
  • Performance of micro scale intermediate temperature solid oxide fuel cell system has been successfully evaluated by computer simulation based on macro modeling. Two systems were studied in this work. The one is designed that the ceria-based electrolyte placed between composite electrodes and the other is designed that electrodes alternately placed on the electrolyte. The injected gas was composed of hydrogen and air. The polarization curve was obtained through a series of calculations for ohmic loss, activation loss and concentration loss. The calculation of each loss was based on the solving of mathematical model of multi physical-phenomena such as ion conduction, fluid dynamics and diffusion and convection by Finite Element Method (FEM). The performance characteristics of SOFC were quantitatively investigated for various structural parameters such as distance between electrodes and thickness of electrolyte.

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구 (A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature: As an Anode Media of SO-DCFC)

  • 유준호;강경태;황준영
    • 대한기계학회논문집B
    • /
    • 제38권8호
    • /
    • pp.677-685
    • /
    • 2014
  • 직접 탄소 연료전지(DCFC)는 석탄을 비롯한 탄소계 연료의 화학에너지를 직접 전기로 변환시킨다. 특히, 약 10 년 전에 고체산화물 전해질을 사용하고 연료극 매개체로 용융탄산염을 사용하는 고성능 직접탄소 연료전지 시스템이 제안되었다. 이 시스템의 경우, 운전 온도가 증가할수록 고체산화물 전해질의 이온 전도도가 향상되고 전기화학 반응이 활성화되어 성능이 향상되나, 연료극 매개체의 화학적인 안정성 문제발생이 우려된다. 본 연구에서는 탄소-탄산염 혼합 매개체의 고온 안정성을 이해하기 위한 일련의 실험을 수행하였다. 질소 또는 이산화탄소 분위기에서 카본블랙과 혼합된 $Li_2CO_3$$K_2CO_3$의 TGA 분석을 수행하였으며, 가열 과정에서 시료로부터 생성되는 가스 성분을 분석하였다. 이러한 결과를 해석하기 위하여, 탄산염의 열분해와 탄산염 등에 의하여 가속화되는 탄소 가스화 반응을 고려한 화학반응 모델을 제시하였으며, 실험 결과로부터 구한 매개체의 중량 손실과 가스 생성을 정성적으로 설명하였다.

Variation of Oxygen Nonstoichiometry of Porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$ SOFC-Cathode under Polarization

  • Mizusaki, Junichiro;Harita, Hideki;Mori, Naoya;Dokiya, Masayuki;Tagawa, Hiroaki
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.177-182
    • /
    • 2000
  • At the porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$(LCM)/YSZ electrodes of solid oxide fuel cells (SOFC), the electrochemical redox reaction of oxygen proceeds via the triple boundary (TPB) of gas/LCM/YSZ. The surface diffusion of adsorbed oxygen on LCM has been proposed as the rate determining process, assuming the gradient of oxygen chemical potential from the outer surface of porous layer to TPB. Along with the formation of this gradient, oxygen nonstoichiometry in the bulk of LCM may varies. In this paper, an electrochemical technique was described precisely to determine the variation of oxygen content in LCM of porous LCM/YSZ under polarization. It was shown that the oxygen potential in LCM layer under large cathodic polarization is much lower than that in the gas phase, being determined from the electrode potential and Nernst equation.

  • PDF

고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기 (kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System)

  • 윤상호;강인용;배규종;배중면
    • 대한기계학회논문집B
    • /
    • 제32권7호
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

Performance of Single Cells with Anode Functional Layer for SOFC

  • 최진혁;이태희;박태성;유영성
    • 신재생에너지
    • /
    • 제5권1호
    • /
    • pp.11-17
    • /
    • 2009
  • To improve the performance of the anode-supported Solid Oxide Fuel Cell (SOFC) which can be operated at an intermediate temperature, the functional layer (FL) is introduced on a anode substrate. And the scandia-stabilized zirconia (ScSZ) and samaria-doped ceria (SDC) which have higher ionic conductivity and better chemical stability than yttria-stabilized zirconia (YSZ) are used as material for the anode FL with the Ni, The fabrication process of anode-supported single cell with the anode FL was established and the power density of those was evaluated. As a result, the sample with anode FL (Ni-YSZ) has higher power density than normal cell. The single cell which was composed of the FL (Ni-YSZ) and electrolyte (YSZ) showed about $550mW/cm^2$ of the maximum power density at $650^{\circ}C$ and $1430mW/cm^2$ at $750^{\circ}C$ respectively, In case of the single cell using the ScSZ and SDC as anode FL, the performance of samples decreased rapidly and those showed unstable voltage during long-term test. In case of using methane as a fuel, the cell performance with each FL decreased comparing with $H_2$ fuel. In the region of a high current density, there are large concentration polarizations.

  • PDF

Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.11-18
    • /
    • 2012
  • The characteristic features of solid oxide fuel cells are reviewed from the viewpoint of the thermodynamic variables to be developed inside cells/stacks particularly in terms of gradients of chemical potential, electrical potential and temperature and corresponding flows of air, fuel, electricity and heat. Examples of abrupt destruction of SOFC systems were collected from failures in controlling their steady flows, while continuous degradation was caused by materials behaviors under gradients of chemical potentials during a long operation. The local equilibrium approximation has been adopted in NEDO project on the durability/reliability of SOFC stacks/systems; this makes it possible to examine the thermodynamic stability/reactivity as well as mass transfer under the thermodynamic variable gradients. Major results of the NEDO project are described with a focus on degradation/deterioration of electrolyte and electrode materials.

연료극 집전체 최적화를 적용한 원통형 고체산화물 연료전지 단전지 성능 향상 (Development of Tubular Solid Oxide Fuel Cells with Advanced Anode Current Collection)

  • 김완제;이승복;송락현;박석주;임탁형;이종원
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.480-486
    • /
    • 2013
  • In this study, tubular SOFC unit cell with advanced anode current collector was fabricated to improve the cell performance. First, we prepared two types of single cells having the same manufacture processes such as the same electrolyte, electrode coating condition and sintering processes. And then to compare the developed single cell performance with conventional cells, we changed the anode current collecting methods. From the impedance analysis and I-V curve analysis, the cell performance of advanced cell is much higher than that of conventional cell.

전사법을 이용한 SOFC Cell 제작 및 출력특성 (Fabrication of SOFC cell by transcription-method)

  • 구자빈;최병현;지미정;안용태;황해진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.91.1-91.1
    • /
    • 2011
  • 고체산화물 연료전지(Solid Oxide Fuel Cell이하 SOFC)는 연료가 갖는 화학에너지를 연소과정 없이, 공기와 H2, CO, CH4와 같은 환원성 가스를 공급받아 $600{\sim}1000^{\circ}C$에서 전기화학적 반응을 통하여 직접 전기를 얻는 방식이다. SOFC는 $700^{\circ}C$ 이상의 고온에서 고체산화물이 연료와 공기가 반응하여 전기와 열을 동시에 생산하기 때문에 carnot cycle의 제한을 받지 않아 발전효율이 40% 이상으로 고효율이고, NOx 및 SOx를 배출하지 않아 무공해이며, moving parts가 없어 소음이 나지 않고, 건설과 증설이 지역이나 기후 조건에 제약 없이 용이하고, 다양한 용량이 가능하며, 고가의 백금 촉매를 사용하지 않으며, 수소, 석탄가스, 천연가스 등의 연료를 사용할 수 있는 장점이 있음, 또한 다향한 형태로 제작할 수 있으며 전해질이 고체에서 전해질 손실 및 보충에 문제가 없고 타 연료전지에 비해 개질기가 필요 없어 발전시스템이 간단하고 경량화가 가능하다. 전사법은 paste를 제작하여 전사용지에 Screen printing하여 건조 후 coating하는 방법으로 기존의 여러 coating 방법보다 제작이 용이하고 소재의 크기, 두께조절이 간편하며, 구성층의 표면조도나 굴곡에 대응이 용이한 방법이다. 본 실험에서는 paste 제조, 전사법을 이용하여 Anode, AFL, Electrolyte, CFL, Cathode전사지를 제작하고 이를 세라믹 평관형 지지체에 변수로 두께 조건별 Coating 한 후 $1400^{\circ}C$ 소결을 진행하여 SEM 분석으로 미세구조 관찰, 출력특성 및 Impedance을 확인하였다.

  • PDF

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process

  • Kang, Hyun Suk;Jung, Yung-Min;Song, Rak-Hyun;Peck, Dong-Hyun;Park, ChangMoon;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2969-2973
    • /
    • 2014
  • A new process to fabricate a composite LSCF-Ag cathode material for SOFCs by electron beam (e-beam) irradiation process has been suggested for operation under intermediate temperature range of $600-700^{\circ}C$. A composite LSCF-Ag cathode with uniformly coated Ag nanoparticles on the surface of the LSCF material was prepared by a facile e-beam irradiation method at room temperature. The morphology of the composite LSCF-Ag material was analyzed using a TEM, FE-SEM, and EDS. The prepared composite LSCF-Ag material can play a significant role in increasing the electro-catalytic activities and reducing the operating temperature of SOFCs. The performance of a tubular single cell prepared using the composite LSCF-Ag cathode, YSZ electrolyte and a Ni/YSZ anode was evaluated at reduced operating temperature of $600-700^{\circ}C$. The micro-structure and chemical composition of the single cell were investigated using a FE-SEM and EDS.