DOI QR코드

DOI QR Code

Performance Modeling of Single-Chamber Micro SOFC

단실형 마이크로 고체 산화물 연료전지의 작동특성 전산모사

  • Cha, Jeong-Hwa (Department of Ceramic Engineering, Hanyang University) ;
  • Chung, Chan-Yeup (Department of Ceramic Engineering, Hanyang University) ;
  • Chung, Yong-Chae (Department of Ceramic Engineering, Hanyang University) ;
  • Kim, Joosun (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jongho (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (Nano-Materials Research Center, Korea Institute of Science and Technology)
  • 차정화 (한양대학교 세라믹공학과) ;
  • 정찬엽 (한양대학교 세라믹공학과) ;
  • 정용재 (한양대학교 세라믹공학과) ;
  • 김주선 (한국과학기술연구원 나노재료연구센터) ;
  • 이종호 (한국과학기술연구원 나노재료연구센터) ;
  • 이해원 (한국과학기술연구원 나노재료연구센터)
  • Published : 2005.12.01

Abstract

Performance of micro scale intermediate temperature solid oxide fuel cell system has been successfully evaluated by computer simulation based on macro modeling. Two systems were studied in this work. The one is designed that the ceria-based electrolyte placed between composite electrodes and the other is designed that electrodes alternately placed on the electrolyte. The injected gas was composed of hydrogen and air. The polarization curve was obtained through a series of calculations for ohmic loss, activation loss and concentration loss. The calculation of each loss was based on the solving of mathematical model of multi physical-phenomena such as ion conduction, fluid dynamics and diffusion and convection by Finite Element Method (FEM). The performance characteristics of SOFC were quantitatively investigated for various structural parameters such as distance between electrodes and thickness of electrolyte.

Keywords

References

  1. M. Lockett, M. J. H. Simmons, and K. Kendall, 'CFD to Predict Temperature Profile for Scale Up of Micro-Tubular SOFC Stacks,' J. Power Sources, 131 243-46 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.082
  2. J. P. P. Huijsmans, F. P. F. Van Berkel, and G. M. Christie, 'Intermediate Temperature SOFC-a Promise for the 21 st Century,' J. Power Sources, 71 107-10 (1998) https://doi.org/10.1016/S0378-7753(97)02789-4
  3. K. Choy, W. Bai, S. Charojrochkul, and B. C. H. Steele, 'The Developement of Intermediate-Temperature Solid Oxide Fuel Cells for the Next Millennium,' J. Power Sources, 71 361-69 (1998) https://doi.org/10.1016/S0378-7753(97)02728-6
  4. J. M. Ralph, A. C. Schoeler, M. Krumpelt, and J. Mater, 'Materials for Lower Temperature Solid Oxide Fuel Cells,' Science, 36 1161-72 (2001)
  5. B. C. H. Steele, 'Materials for IT-SOFC Stacks 35 Years R&D: The Inevitability of Gradualness?,' Solid State Ionics, 143 3-20 (2000) https://doi.org/10.1016/S0167-2738(01)00827-X
  6. T. Hibino, A. Hashimoto, T. Inoue, J.-I. Tokuno, S.-I. Yoshida, and M. Sana, 'A Low-Operating Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixture,' Science, 288 [16] 2031-33 (2000) https://doi.org/10.1126/science.288.5473.2031
  7. T. Hibino, H. Tsunekawa, S. Tanimoto, and M. Sano, 'Improvement of Single-Chamber Solid-Oxide Fuel Cell and Evaluation of New Cell Designs,' J. Electrochem. Soc., 147 1338-43 (2000) https://doi.org/10.1149/1.1393359
  8. T. Hibino, A. Hashimoto, T. Inoue, J.-I. Tokuno, S.-I. Yoshida, and M. Sano, 'Single-Chamber Solid Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixture,' J. Electrochem. Soc., 147 2888-92 (2000) https://doi.org/10.1149/1.1393621
  9. T. Hibino, S. Wang, S. Kakimoto, and M. Sano, 'One- chamber Solid Oxide Fuel Cell Constructed from a YSZ Electrolyte with a Ni Anode and LSM Cathode,' Solid State Ionics, 127 89-98 (2000) https://doi.org/10.1016/S0167-2738(99)00253-2
  10. H. Inaba, R. Sagawa, H. Hayashi, and K. Kawamura, 'Molecular Dynamics Simulation of Gadolinia-Doped Ceria,' Solid State Ionics, 122 95-103 (1999) https://doi.org/10.1016/S0167-2738(99)00036-3
  11. M. S. Khan, M. S. Islam, and D. R. Bates, 'Cation Doping and Oxygen Diffusion in Zirconia: A Combined Atomistic Simulation and Molecular Dynamics Study,' J. Mater. Chem., 8 2299-307 (1998) https://doi.org/10.1039/a803917h
  12. Y. Yamamura, S. Kawasaki, and H. Sakai, 'Molecular Dynamics Analysis of Ionic Conduction Mechanism in Yttria-Stabilized Zirconia,' Solid State Ionics, 126 181-89 (1999) https://doi.org/10.1016/S0167-2738(99)00227-1
  13. T. P. Perumal, V. Sridhar, K. P. N. Murthy, K. S. Easwarakumar, and S. Ramasamy, 'Molecular Dynamics Simulations of Oxygen ion Diffusion in Yttria-Stabilized Zirconia,' Physica A, 209 35-44 (2002)
  14. A. S. loselevich and A. A. Komyshew, 'Phenomenological Theory of Solid Oxide Fuel Cell Anode,' Fuel Cells, 1 4065 (2001)
  15. S. H. Chan and A. T. Xia, 'Anode Micro Model of Solid Oxide Fuel Cell,' J. Electrochem. Soc., 148 A388-94 (2001) https://doi.org/10.1149/1.1357174
  16. M. Ihara, T. Kusano, and C. Yokoyama, 'Competitive Adsorption Reaction Mechanism ofNilYttria-Stabilized Zirconia Cermet Anodes in $H_2-H_2O$ Solid Oxide Fuel Cells,' J. Electrochem. Soc., 148 A209-19 (2001) https://doi.org/10.1149/1.1345873
  17. X. J. Chen, S. H. Chan, and K. A. Khor, 'Simulation of Composite Cathode in Solid Oxide Fuel Cells,' Electrochimca. Acta, 49 1851-61 (2004) https://doi.org/10.1016/j.electacta.2003.12.015
  18. H. Zhu and R. J. Kee, 'A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies,' J. Power Sources, 117 61-74 (2003) https://doi.org/10.1016/S0378-7753(03)00358-6
  19. E. H. Racheco, D. Singh, P. N. Hutton, N. Patel, and M. D. Mann, 'A Macro-Level Model for Determining the Performance Characteristics of Solid Oxide Fuel Cells,' J. Power Sources, 138 174-86 (2004) https://doi.org/10.1016/j.jpowsour.2004.06.051
  20. R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. A. Douglas, 'Performance Comparison ofFick's, Dusty-Gas and Stefan-Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode,' J. Power Sources, 122 9-18 (2003) https://doi.org/10.1016/S0378-7753(02)00724-3
  21. T. Ackmann, L. G. J. de Haart, W. Lehnert, and D. Stolten, 'Modeling of Mass and Heat Transport in Plannar Substrate Type SOFCs,' J. Electrochem. Soc., 150 A783-89 (2003) https://doi.org/10.1149/1.1574029
  22. J. Larminie and A. Dicks, 'Fuel Cell Systems Explained,' Second Ed., pp. 35-42, Wiley, 2003
  23. B. C. H. Steele, 'Appraisal of $Ce_{1-y}Gd_yO_{2-y/2}$ Electrolytes for IT-SOFC Operation at $500^{\circ}C$,' Solid State lonics, 129 95-110 (2000) https://doi.org/10.1016/S0167-2738(99)00319-7
  24. C. Xia, W. Rauch, F. Chen, and M. Liu, '$Sm_{0.5}Sr_{0.5}CoO_3$ Cathodes for Low-Temperature SOFCs,' Solic State lonics, 149 11-9 (2002) https://doi.org/10.1016/S0167-2738(02)00131-5
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 'Numerical Recipes in C,' Second Ed., pp. 362-67, Cambridge University Press, 1992
  26. J. R. Welty, C. E. Wick, R. E. Wilson, and G. Rorrer, 'Fundamentals of Momentum, Heat and Mass Transfer,' Fourth Ed., pp. 431-44, Wiley, 2001