• Title/Summary/Keyword: Software-Defined Networking(SDN)

Search Result 145, Processing Time 0.022 seconds

TrAdaBoost-based Flow Rule Classification Technique in SDN Environment (SDN 환경에서의 TrAdaBoost 기반 Flow 규칙 구분 기법)

  • Kim, Min-Woo;Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.149-150
    • /
    • 2019
  • 기존의 Flow 규칙 구분을 위해 연구되었던 기법들은 적응적 또는 사전 처리의 접근법이 제안되었으나 각각의 장단점을 기반으로 효율적인 접근법이 연구되어야한다. 본 연구에서는 Flow 규칙을 삽입하기 전에, 스위치의 계산 작업을 완화하기 위하여 전이 학습 기법인 TrAdaBoost를 이용함으로써 Flow 규칙들을 구분하는 접근법을 제안한다.

  • PDF

Efficient Flow Table Management Scheme in SDN-Based Cloud Computing Networks

  • Ha, Nambong;Kim, Namgi
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.228-238
    • /
    • 2018
  • With the rapid advancement of Internet services, there has been a dramatic increase in services that dynamically provide Internet resources on demand, such as cloud computing. In a cloud computing service, because the number of users in the cloud is changing dynamically, it is more efficient to utilize a flexible network technology such as software-defined networking (SDN). However, to efficiently support the SDN-based cloud computing service with limited resources, it is important to effectively manage the flow table at the SDN switch. Therefore, in this paper, a new flow management scheme is proposed that is able to, through efficient management, speed up the flow-entry search speed and simultaneously maximize the number of flow entries. The proposed scheme maximizes the capacity of the flow table by efficiently storing flow entry information while quickly executing the operation of flow-entry search by employing a hash index. In this paper, the proposed scheme is implemented by modifying the actual software SDN switch and then, its performance is analyzed. The results of the analysis show that the proposed scheme, by managing the flow tables efficiently, can support more flow entries.

A Moving Window Principal Components Analysis Based Anomaly Detection and Mitigation Approach in SDN Network

  • Wang, Mingxin;Zhou, Huachun;Chen, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3946-3965
    • /
    • 2018
  • Network anomaly detection in Software Defined Networking, especially the detection of DDoS attack, has been given great attention in recent years. It is convenient to build the Traffic Matrix from a global view in SDN. However, the monitoring and management of high-volume feature-rich traffic in large networks brings significant challenges. In this paper, we propose a moving window Principal Components Analysis based anomaly detection and mitigation approach to map data onto a low-dimensional subspace and keep monitoring the network state in real-time. Once the anomaly is detected, the controller will install the defense flow table rules onto the corresponding data plane switches to mitigate the attack. Furthermore, we evaluate our approach with experiments. The Receiver Operating Characteristic curves show that our approach performs well in both detection probability and false alarm probability compared with the entropy-based approach. In addition, the mitigation effect is impressive that our approach can prevent most of the attacking traffic. At last, we evaluate the overhead of the system, including the detection delay and utilization of CPU, which is not excessive. Our anomaly detection approach is lightweight and effective.

An Optimized Deployment Mechanism for Virtual Middleboxes in NFV- and SDN-Enabling Network

  • Xiong, Gang;Sun, Penghao;Hu, Yuxiang;Lan, Julong;Li, Kan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3474-3497
    • /
    • 2016
  • Network Function Virtualization (NFV) and Software Defined Networking (SDN) are recently considered as very promising drivers of the evolution of existing middlebox services, which play intrinsic and fundamental roles in today's networks. To address the virtual service deployment issues that caused by introducing NFV or SDN to networks, this paper proposes an optimal solution by combining quantum genetic algorithm with cooperative game theory. Specifically, we first state the concrete content of the service deployment problem and describe the system framework based on the architecture of SDN. Second, for the service location placement sub-problem, an integer linear programming model is built, which aims at minimizing the network transport delay by selecting suitable service locations, and then a heuristic solution is designed based on the improved quantum genetic algorithm. Third, for the service amount placement sub-problem, we apply the rigorous cooperative game-theoretic approach to build the mathematical model, and implement a distributed algorithm corresponding to Nash bargaining solution. Finally, experimental results show that our proposed method can calculate automatically the optimized placement locations, which reduces 30% of the average traffic delay compared to that of the random placement scheme. Meanwhile, the service amount placement approach can achieve the performance that the average metric values of satisfaction degree and fairness index reach above 90%. And evaluation results demonstrate that our proposed mechanism has a comprehensive advantage for network application.

Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

  • Zhao, Zhiyuan;Meng, Xiangru;Lu, Siyuan;Su, Yuze
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4144-4165
    • /
    • 2018
  • Software-defined networking (SDN) has emerged as a promising technology for network programmability and experiments. In this work, we focus on virtual network embedding in multiple controllers SDN network. In SDN virtualization environment, virtual SDN networks (vSDNs) operate on the shared substrate network and managed by their each controller, the placement and load of controllers affect vSDN embedding process. We consider controller placement, vSDN embedding, controller adjustment as a joint problem, together considering different quality of service (QoS) requirement for users, formulate the problem into mathematical models to minimize the average time delay of control paths, the load imbalance degree of controllers and embedding cost. We propose a heuristic method which places controllers and partitions control domains according to substrate SDN network, embeds different QoS constraint vSDN requests by corresponding algorithms, and migrates switches between control domains to realize load balance of controllers. The simulation results show that the proposed method can satisfy different QoS requirement of tenants, keep load balance between controllers, and work well in the acceptance ratio and revenue to cost ratio for vSDN embedding.

A Dynamic Placement Mechanism of Service Function Chaining Based on Software-defined Networking

  • Liu, Yicen;Lu, Yu;Chen, Xingkai;Li, Xi;Qiao, Wenxin;Chen, Liyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4640-4661
    • /
    • 2018
  • To cope with the explosive growth of Internet services, Service Function Chaining (SFC) based on Software-defined Networking (SDN) is an emerging and promising technology that has been suggested to meet this challenge. Determining the placement of Virtual Network Functions (VNFs) and routing paths that optimize the network utilization and resource consumption is a challenging problem, particularly without violating service level agreements (SLAs). This problem is called the optimal SFC placement problem and an Integer Linear Programming (ILP) formulation is provided. A greedy heuristic solution is also provided based on an improved two-step mapping algorithm. The obtained experimental results show that the proposed algorithm can automatically place VNFs at the optimal locations and find the optimal routing paths for each online request. This algorithm can increase the average request acceptance rate by about 17.6% and provide more than 20-fold reduction of the computational complexity compared to the Greedy algorithm. The feasibility of this approach is demonstrated via NetFPGA-10G prototype implementation.

Content-Aware D2D Caching for Reducing Visiting Latency in Virtualized Cellular Networks

  • Sun, Guolin;Al-Ward, Hisham;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.514-535
    • /
    • 2019
  • Information-centric networks operate under the assumption that all network components have built-in caching capabilities. Integrating the caching strategies of information centric networking (ICN) with wireless virtualization improves the gain of virtual infrastructure content caching. In this paper, we propose a framework for software-defined information centric virtualized wireless device-to-device (D2D) networks. Enabling D2D communications in virtualized ICN increases the spectral efficiency due to reuse and proximity gains while the software-defined network (SDN) as a platform also simplifies the computational overhead. In this framework, we propose a joint virtual resource and cache allocation solution for latency-sensitive applications in the next-generation cellular networks. As the formulated problem is NP-hard, we design low-complexity heuristic algorithms which are intuitive and efficient. In our proposed framework, different services can share a pool of infrastructure items. We evaluate our proposed framework and algorithm through extensive simulations. The results demonstrate significant improvements in terms of visiting latency, end user QoE, InP resource utilization and MVNO utility gain.

Development of SDN-based Network Platform for Mobility Support (이동성 지원을 위한 SDN 기반의 네트워크 플랫폼 개발)

  • Lee, Wan-Jik;Lee, Ho-Young;Heo, Seok-Yeol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.401-407
    • /
    • 2019
  • SDN(Softeware Defined Networking) has emerged to address the rapidly growing demand for cloud computing and to support network virtualization services. Therefor many companies and organizations have taken SDN as a next-generation network technology. However, unlike the wired network where the SDN is originally designed, the SDN in the wireless network has a restriction that it can not provide the mobility of the node. In this paper, we extended existing openflow protocol of SDN and developed SDN-based network platform, which enables the SDN controller to manage the radio resources of its network and support the mobility of the nodes. The mobility support function of this paper has the advantage that a node in the network can move using its two or more wireless interfaces by using the radio resource management function of the SDN controller. In order to test the functions implemented in this paper, we measured parameters related to various transmission performance according to various mobile experiments, and compared parameters related to performance using one wireless interface and two interfaces. The SDN-based network platform proposed in this paper is expected to be able to monitor the resources of wireless networks and support the mobility of nodes in the SDN environment.

A Cost-effective SFC Monitoring Approach with Minimum Agent Deployment (최소한의 에이전트 배치를 통한 비용 효율적인 SFC 모니터링 방식)

  • Lee, Jisoo;Yeoum, Sanggil;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.122-125
    • /
    • 2018
  • 최근 다양한 네트워크 서비스에 대한 수요가 증가함에 따라 Service Function (SF)의 동적 구성을 위한 유연한 모델이 요구된다. Service Function Chaining (SFC)은 일련의 SF로 구성된 새로운 네트워크 서비스 배포 모델을 정의한다. Software Defined Networking (SDN)은 제어 평면을 중앙 집중화함으로써 네트워크 트래픽 제어를 단순화하여 SFC동작에 중요한 역할을 한다. SDN 기반 SFC(SD_SFC)는 SF 장애를 감지하기 위한 모니터링 시스템이 필요하다. 그러나 기존의 모니터링 방식은 모든 SF에 Monitoring Agent(MA)를 배치하기 때문에 높은 시그널링 비용을 가진다. 본 논문에서는 최소한의 SF에 MA를 배치함으로써 시그널링 비용을 줄이는 SFC모니터링 방식을 제안한다. 제안하는 SF selection 알고리즘은 최적화된 SF 집합을 사용하여 오버로드된 SF를 반환하여 MA를 배치한다. 우리는 제안 시스템의 효율성을 평가하기 위해 테스트베드 구현을 통해 실험하였다. 실험 결과에 따르면 우리는 기존 방식에 비해서 시그널링 비용을 59.2% 절감하였다.

Trend and Forecast on Standardization of SDN and NFV for Smart Internet (스마트인터넷을 위한 SDN 및 NFV 표준기술 동향분석)

  • Lee, S.I.;Yi, J.H.;Shin, M.K.;Kim, H.J.;Sohn, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • 정부에서는 '스마트 인터넷'을 미래인터넷의 초기 보급모델로 정의하고 개방화, 지능화, 가상화 기반의 네트워크로 대변되는 프로그래머블 네트워크 구축 계획을 추진 중에 있다. 이를 구현하기 위한 기술로서 네트워크 설정을 소프트웨어적으로 제어하는 SDN(Software-Defined Networking) 기술과 네트워크 기능을 소프트웨어적으로 가상화하여 제어 및 관리하는 NFV(Network Functions Virtualization) 기술이 소개되었다. 이들 기술은 네트워크의 개방화 및 가상화 실현을 위해 국제 표준화 활동을 중심으로 연구 및 개발이 각각 진행되어 왔으며, 산업 및 시장이 요구하는 기술적 지향점이 모두 표준에 반영되고 있다 하겠다. 본고에서는 SDN 및 NFV 기술의 표준화 동향을 살펴보고 이에 따른 향후 기술개발 전망 및 방향을 기술한다.

  • PDF