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Abstract 
With the rapid advancement of Internet services, there has been a dramatic increase in services that 
dynamically provide Internet resources on demand, such as cloud computing. In a cloud computing service, 
because the number of users in the cloud is changing dynamically, it is more efficient to utilize a flexible 
network technology such as software-defined networking (SDN). However, to efficiently support the SDN-
based cloud computing service with limited resources, it is important to effectively manage the flow table at 
the SDN switch. Therefore, in this paper, a new flow management scheme is proposed that is able to, through 
efficient management, speed up the flow-entry search speed and simultaneously maximize the number of flow 
entries. The proposed scheme maximizes the capacity of the flow table by efficiently storing flow entry 
information while quickly executing the operation of flow-entry search by employing a hash index. In this 
paper, the proposed scheme is implemented by modifying the actual software SDN switch and then, its 
performance is analyzed. The results of the analysis show that the proposed scheme, by managing the flow 
tables efficiently, can support more flow entries. 
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1. Introduction 

Conventional computer networks aim at forwarding a packet from the source host to the destination 
host as quickly as possible based on the destination IP address. Consequently, there is an advantage in 
that this process is simple and easy to implement. However, it is complicated and inconvenient to 
change the functions of a conventional network architecture once it has been deployed [1]. Thus, when 
some problems or changes occur in the network, it is difficult to cope with them. Additionally, because 
the companies that provide switches and routers have their own solutions to such problems along with 
different managing software, compatibility problems exist between various companies. Moreover, with 
the birth of very flexible service models where the customers pay only for their usage, such as in cloud 
computing services, a means of operating networks flexibly is required. Among the proposed 
technologies to address this issue, software-defined networking (SDN) is one that has been practically 
implemented [2-4]. SDN is a technology that dynamically enables a more flexible network 
configuration in the conventional network by allowing centralized processing through the decoupling 
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of packet-forwarding and function-control. In the SDN, the control plane fulfills the role of managing 
information for packet-forwarding, and the data plane is responsible for forwarding the packets 
according to the information determined by the control plane. Thus, by dividing the control plane and 
data plane, and by allowing the SDN controller to carry out the centralized processing of packet control, 
the SDN can easily support a multi-tenant network in a complicated and dynamically changing service, 
such as a cloud-computing server. Therefore, the application of SDN network technology in cloud 
computing services is gradually expanding. 

To maximize the performance of SDN-based cloud computing networks, effective research is needed 
in many aspects such as the SDN controller platform, application designs, switching speed, and switch 
capacity. Research in the field of switching technology that can support more users expeditiously by 
efficiently utilizing limited resources plays a critical role in the scalability of SDN-based cloud 
computing services [2,5]. An SDN switch stores packet-forwarding information in the flow table when 
it obtains the information from a controller. However, owing to the limited capacity of the flow table, 
the maximum number of users that can be supported by a switch is bounded by the number of flow 
table entries and the flow processing speed. Therefore, if faster support of a greater number of flow 
entries is possible by the efficient utilization of the switch's flow table resources, the switching capacity 
will increase, which, in turn, will result in more efficient cloud computing services. Accordingly, this 
paper proposes a scheme that increases the number of flow entries while maintaining the speed of flow 
entry searching via the efficient configuration and management of the flow table.  

This paper is organized as follows. Section 2 gives a basic background of the present research and 
examines the flow table problems that could occur along with the search speed. It also introduces 
related research and analyzes problems that may arise therein. Section 3 introduces and explains the 
scheme that is proposed in this paper. Section 4 explains the method to modify the existing OpenFlow 
switch software and to implement the proposed technique. An experimental environment is established 
by using the implemented software, and the results of the experiment are analyzed. Finally, Section 5 
summarizes the research with conclusions and future research. 

 
 

2. Background Knowledge and Related Works 

There were many suggestions for the introduction of a programmable network to solve the problems 
of conventional networks that simply forward packets based on the destination IP address. Through 
various studies, there were several suggestions on new network paradigms [2]. Among the diverse 
paradigms proposed, SDN is the most widely studied and the practically used technology today. 

Since the role of the control plane and data plane in the existing network is not divided, each switch 
and each router is responsible for all the roles. Thus, when any network problem arises, it is difficult to 
respond properly. To solve this problem, SDN assigns a unique role for each control plane and data 
plane. Specifically, the control plane controls the network and the data plane forwards the packet 
according to the rules determined by the control plane [6]. According to the application that exists in 
the control plane, the function of the switches in the SDN can be changed, and this enables the 
provision of various services. Load balancing and service chaining are representational SDN-based 
services, and the power saving from SDN-based load balancing at Google's data center is an example of 
this application in the real world. 
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The SDN operates by exchanging messages between the control plane and data plane. The standard 
protocol for these messages is called the OpenFlow protocol [7,8]. This protocol is open to the public 
via open source, and a majority of SDNs use this protocol to exchange messages. Packet-in, Flow-mod, 
and Packet-out are representational OpenFlow protocol messages. Packet-in is the message that the 
switch delivers to the controller with packet information when the packet arrives first at the switch. 
When receiving a Packet-in message, the controller creates the rule for the corresponding packet and 
sends its information with a Flow-mod message to the switch. Also, it forwards the Packet-out message 
to the switch. When the switch receives the Flow-mod message, it analyzes the contents of the message 
and then stores the flow information in the flow table, and proceeds with packet processing. The 
OpenFlow protocol versions starting with version 1.0 and the current version 1.5 are available now. 

 
2.1 Flow Table Architecture 
 

SDN divides the network organization into the control plane and data plane. The control plane has a 
set of rules for processing the packet, and when those packets enter the data plane, they are processed 
according to the pertinent rule. The rules are stored and managed in the flow table inside the switch. 
However, as the network performance depends on how well the flow information is stored in the flow 
table, many techniques for defining and managing the flow information in the flow table are being 
developed. Flow information is stored and managed by the flow entry unit in the flow table. Fig. 1 
illustrates the flow table and the flow entry fields stored inside.  

 

 

Fig. 1. Flow table and flow entry fields. 
 
Flow entry constitutes Matching field, Action field, and Stats field. The Matching field stores packet 

information, while the Action field contains the information on what actions to take when the flow 
entry matches. The Stats field stores information about the number of times the packet is matched. 

Memory architecture, which implements a flow table, affects the performance of SDN-based cloud 
computing networks. The SDN switch implements a flow table using various memory architectures, 
such as SRAM, CAM, and TCAM [9-11]. 

The methods and speed of searching for the flow entry in a flow table change according to the 
characteristics of each memory architecture. The fastest memory architecture is TCAM, which searches 
the entire flow table in one cycle. However, TCAM has the shortcoming of being too costly for its 
capacity. Thus, as the demand for its application has increased in many areas, the utilization of a cost-
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effective SRAM to implement the flow table can be found more often. 
When using the SRAM to implement a flow table, the implementation can be generally categorized 

into the hash-based flow table and the wildcard-based flow table. The hash-based flow table and 
wildcard-based flow table, which are also provided by the OpenFlow switch, have their advantages and 
disadvantages. The hash-based flow table enters flow information as the input of a hash function, and 
then uses the hash value to store the packet information in a flow table. Since, the hash-based flow table 
matches the packet entry (which is registered in the flow table) by using the hash function; it has an 
advantage of a faster search speed. However, even if a single bit from the packet information differs, it 
has to be stored in a separate flow entry. Thus, the hash-based flow table requires greater memory 
capacity. For example, consider the case of a packet having W as a destination host and 15 as a 
destination port, and a packet with W as a destination host and 16 as a destination port. In this case, 
even if they are outputted to the same x interface, the flow information of these two packets needs to be 
stored as two different flow entries in the hash-based flow table. Fig. 2 illustrates an example of the 
composition of a hash-based flow table. 

 

Hash value 
Flow identifying fields 

Destination 
VLAN … SRC port DST port 

0xAAA0 A … a i W 
0xAABB B … b j X 
0xCC77 C … c k Y 
0xCCAB D … d l Z 

… … …  … … 

Fig. 2. Example of a hash-based flow table. 
 
The wildcard-based flow table stores flow entries in a flow table, using wildcards. Since it uses 

wildcards to store flow entries, it is not necessary for the wildcard-based flow table to create a separate 
flow entry for the packet that contains different packet information. For example, when packets have W 
as their destination host, and all of them are output to interface x, the corresponding information can 
be stored as one flow entry in a wildcard-based flow table. Consequently, the wildcard-based flow table 
can save on memory costs. However, because it has to search the flow entry for the corresponding 
packet in the flow table, in the worst case, it needs to search the entire flow entry. This is its 
shortcoming. Thus, as the amount of flow entries increases, the searching speed of a wildcard-based 
flow table has a tendency to increase linearly. Fig. 3 illustrates an example of a wildcard-based flow 
table. 

 
Flow identifying fields 

Destination 
VLAN … SRC port DST port 

* … a h W 
B … * i X 
C … * * Y 
* … d j Z 
… … … … … 

Fig. 3. Example of a wildcard-based flow table. 
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2.2 Hybrid Flow Table Architecture 
 

In SDN, the flow table architecture has different characteristics according to its type. The hash-based 
flow table requires large memory capacity, but otherwise, its flow wildcard scheme, after implementing 
entry searching speed is fast. The wildcard-based flow table utilizes wildcards to store large amounts of 
flow information in a small memory, but flow-entry search speed is slow. To overcome these differences 
and to utilize the advantages from both architectures, a hybrid flow-table architecture was proposed [12].  

A hybrid flow-table architecture adopts both the hash-based flow table and wildcard-based flow table, 
and represents a hash-assisted wildcard scheme. The hash-assisted wildcard scheme first stores the 
information in a wildcard-based flow table when the flow information enters. When the packet that 
needs to be forwarded is in the switch, the corresponding flow information is first searched in a hash-
based flow table, and only when it is absent, the corresponding flow information is searched in the 
wildcard-based flow table. At this time, if the flow information of the packet matches, then this 
information is also registered in the hash-based flow table. Thus, when packets with the same flow 
information enter afterward, the matches occur due to the flow information registered in the hash-
based flow table, making the flow-entry search of the wildcard-based flow table unnecessary. Thus, it 
facilitates the fast forwarding of a packet.  

The hash-assisted wildcard scheme that has been explained above uses both hash-based flow table 
and wildcard-based flow table. Thus, this enables better performance, when compared to the flow table 
architecture that uses only one of them. However, the hash-based flow table has the following 
shortcomings: first, a decreased performance as the amount of flow information increases; second, it 
has to copy the flow information from the wildcard-based flow table into it, when the packets match at 
the wildcard-based flow table of the hash-assisted wildcard scheme. The task of copying the flow 
information from the wildcard-based flow table to the hash-based flow table, in case of frequent 
occurrence, can create too much overhead. In addition, the hash-assisted wildcard scheme still must 
implement the hash-based flow table, which occupies large memory; there is a restriction on the 
amount of flow entries. When the utilization rate of the hash-based flow table increases, it can raise the 
collision rate of hash function values, and eventually, this decreases the search speed of a hash-based 
flow table [13]. To resolve such issues, in this paper, a new flow-table management scheme, called hash-
indexed wildcard scheme, has been proposed. This proposed scheme enables a faster search of the flow 
information in a wildcard-based flow table using hash function. Simultaneously, it reduces the memory 
usage of the hash-based flow table by storing only the flow entry index of the wildcard-flow table that 
corresponds to the matched flow.  

 
 

3. Proposed Scheme 

Since the degradation of performance always occurs in a hash-based flow table, as the hash table's 
usage rate increases, it is necessary to secure the maximum number of hash entries. However, when the 
flow matching occurs in a wildcard-based flow table, in the case of the hash-assisted wildcard scheme, 
the flow information that pertains to the matching flow is stored in the hash-based flow table. Thus, the 
amount of memory usage of the hash-based flow table is very large. To overcome this issue, and to 
decrease the memory requirement of the hash-based flow table, the proposed scheme does not store the 
entire flow matching information in a hash-based flow table. Instead, it stores only the location of the 
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flow entry that pertains to the flow in the wildcard-based table. Hence, the proposed scheme deletes the 
matching field from the existing hash-based flow table and keeps only the index value of the matched 
flow of the wildcard-based flow table. Therefore, it is able to secure more hash entries. Fig. 4 illustrates 
the proposed scheme. 

The proposed hash-indexed wildcard scheme calculates a hash value that corresponds to the packet 
via a hash function, when the packet enters the switch. By using the computed hash value, the proposed 
scheme searches the hash-based flow table. If the index information in the entry that matches the hash 
value in the hash-based flow table exists, it extracts flow information from the flow entry of the 
wildcard-based flow table that pertains to the index, and matches the information with the inputted 
packet. If the pertaining flow information is the right one for the inputted packet, then it uses this 
information to process the packet. If there is a mismatch between the inputted packet and the extracted 
flow information from the wildcard-based flow table, then it searches for the flow information that 
corresponds to the inputted packet via the linear-searching of the wildcard-based flow table. Even when 
the flow information that pertains to the inputted packet is absent from the hash-based flow table, it 
carries out the linear search operation on the wildcard-based flow table. During the linear searching of 
the wildcard-based flow table, if the flow information that corresponds to the inputted packet is found, 
then it inserts the index information about the flow entry (which contains this flow information) into 
the hash-based flow table. Through this process, afterward, the inputted packets of the same flow will be 
matched in the hash-based flow table, thus allowing the pertinent flow information to be matched 
quickly in a wildcard-based flow table. 

 

 

Fig. 4. The hash-indexed wildcard scheme. 
 

 
4. Performance Evaluation 

4.1 Implementation 
 

The switches that support SDN can be largely grouped into hardware SDN switches and software 
SDN switches. Hardware SDN switches are being produced by many corporations such as HP, Dell, and 
Piolink. For the software SDN switch, there are OpenVSwitch, OpenFlow switch, Indigo, and others. 
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Unlike the hardware-based SDN switch, the software-based SDN switch does not require the direct 
purchase of its tools for installation on the server. This is its advantage. In addition, it is possible to 
modify the internal source of the switch to add additional functions. Anyone can manipulate the 
software-based SDN switch because it is an open-source software. 

The OpenFlow switch, developed at Stanford University, is a software-based SDN switch that is easy 
to modify, and has been widely used in many studies. OpenFlow switches implement both hash-based 
flow tables and wildcard-based flow tables. The hash-based flow table of the OpenFlow switch uses 
CRC32 as a hash function. The wildcard-based flow table is composed of flow entries with wildcards 
and search its entries in a linear way. In this paper, we use OpenFlow switch version 1.0 and modifies it 
to implement and compare the hash-assisted wildcard scheme and the hash-indexed wildcard scheme. 

In the OpenFlow switch, the size of the hash-based flow table is fixed as a unit of 2n. The index value 
is the lower n bits of the value obtained by computing the packet information by hash function. For 
example, if n is 10, and the value of the hash is 1105482, then the index value will be the lower 10 bits of 
1105482, which is 586, and the corresponding flow entry will be stored in index 586. The flow entry in 
the hash-based flow table is composed of the flow structure defined in lib/flow.h, the sw_flow_key 
structure defined in udatapath/switch-flow.h, and the sw_flow structure defined in udatapath/switch-
flow.h. It uses 160 bytes of memory per flow entry. The wildcard-based flow table in an OpenFlow 
switch is composed of a matching field that stores priority and flow information, and as in the hash-
based flow table, uses 160 bytes of memory per flow entry. 

Fig. 5 shows the architecture of a hash-assisted wildcard scheme implemented by using the OpenFlow 
switch. In the hash-assisted wildcard scheme, the flow entry of the hash-based flow table is copied and 
inserted from the wildcard-based flow entry. The index size of the hash-based flow table is 8 Bytes. If 
the number of entries of a flow table is 2n, then the size of the hash-based flow table is 168 bytes  2n. 

 

 
Fig. 5. Implemented architecture of the hash-assisted wildcard scheme. 

 

 
Fig. 6. Implemented architecture of the hash-indexed wildcard scheme. 



Nambong Ha and Namgi Kim 
 

 

J Inf Process Syst, Vol.14, No.1, pp.228~238, February 2018 | 235 

Fig. 6 illustrates the architecture of the hash-indexed wildcard scheme implemented in the OpenFlow 
switch. In a Hash-indexed wildcard scheme, only the index information that refers to the flow entry 
inside a wildcard-based flow table is stored. Thus, in comparison to a hash-assisted wildcard scheme, 
the proposed scheme can store a greater number of flow entries with the same memory capacity.  

 
4.2 Evaluation 
 

In this paper, an experiment compared the wildcard-only scheme, hash-assisted wildcard scheme, 
and hash-indexed wildcard scheme to evaluate the performance. For the experiment, a virtual network 
was generated using Mininet in the Ubuntu 14.04 64-bit, and the source code of OpenFlow switch, 
version 1.0 was modified to conduct the experiment. Table 1 summarizes the system environment used 
for the experiment. 

 
Table 1. System environment for the experiments 

Parameter Value 
CPU I5-4460 
RAM 4 GB 

OS Ubuntu 14.04 (64 bit) 
Virtual network Mininet 

Software SDN switch OpenFlow switch 1.0 
 

Table 2. Experimental setup 
Scheme Small system Large system 

Wildcard only 1,000 wildcard entries 10,000 wildcard entries 

Hash-assisted wildcard 
 

1,024 hash entries  
+ 1,000 wildcard entries 

8,192 hash entries  
+ 10,000 wildcard entries 

Hash-indexed wildcard
 

16,384 hash entries
 + 1,000 wildcard entries 

131,072 hash entries  
+ 10,000 wildcard entries 

 

Table 2 summarizes the system environment for the experiment. The experiment was carried out 
separately in a small system environment and in a large system environment. The small system 
environment means a system environment with a small system memory capacity, where the number of 
flow entries in flow tables is set to be small. The large system environment means a system environment 
with a greater memory capacity, so the number of flow entries is set to the greater amount. In the small 
system environment, the maximum number of flow entries of the hash-based flow table in the hash-
assisted wildcard scheme is set to 1,024, while the maximum number of flow entries of the hash-based 
flow table in the hash-indexed wildcard scheme is set to 16,834. This is because, when storing the same 
number of flow entries in a hash-based flow table, the hash-assisted wildcard scheme requires a 
memory size that is more than 16 times larger than the hash-indexed wildcard scheme. In the large 
system environment, the maximum number of flow entries in the hash-based flow table is set to 8,192 
in the hash-assisted wildcard scheme, and the maximum number of flow entries in the hash-indexed 
wildcard scheme is set to 131,072 for reasons mentioned above.  

Figs. 7 and 8 show the packet-forwarding time according to the number of flows. As one can see from 
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these figures, when only the wildcard-based flow table is used in the wildcard-only scheme, regardless 
of the number of flows, it always requires considerably more time. In the case of a hash-assisted 
wildcard scheme, if the number of flows greater than the number of flow entries that can be stored in 
the hash-based flow table enters as the switch inputs, whenever the wildcard-based flow table is 
updated, the flow entry of the hash-based flow table is replaced. Therefore, it shows results similar to 
those of the wildcard-only scheme. For the proposed scheme in this paper, since the number of flow 
entries that can be stored in the hash-based flow table is much greater than that in the hash-assisted 
flow scheme, even if the number of flows increases, its packet forwarding time is much shorter than that 
of the hash-assisted wildcard scheme. 

 

 
Fig. 7. Packet forwarding time for small system environment. 

 

 
Fig. 8. Packet forwarding time for large system environment. 

 
 

5. Conclusion 

In this paper, a novel flow-table management scheme that can be used in SDN-based network 
systems, which can efficiently support cloud services, is proposed. In an SDN-based network system, a 
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flow table can be configured as a hash-based flow table and a wildcard-based flow table. The hash-based 
flow table of the previously proposed hash-assisted wildcard scheme has the advantage of a faster flow-
information search that can shorten the packet forwarding time. But it requires a greater memory 
capacity because it stores the flow information for every flow entry. Especially with respect to the hash 
table, when the entry occupation rate is saturated, there is a rapid decline in its search speed. This can 
reduce its performance. Therefore, it is necessary to secure the maximum number of flow entries in 
hash-based flow tables. Accordingly, in this paper, a hash-indexed wildcard scheme is proposed. The 
proposed scheme deletes the flow-matching field stored per flow entry in the hash-based flow tables. It 
stores only the index information for the matching flow in the wildcard flow table. Consequently, the 
scheme reduces memory usage so that the number of flow entries of the hash-based flow table can be 
greater than that with the hash-assisted wildcard scheme. 

The results of performance evaluation show that the proposed scheme exhibited a maximum 
performance increase of 70%, in comparison to the hash-assisted wildcard scheme. Future work will 
involve transferring the experimental environment implemented in the software-based SDN switch to a 
hardware-based SDN switch for implementation. Further, the performance of the proposed scheme in a 
real-time environment will be analyzed. 
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