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Abstract 
 

Software-defined networking (SDN) has emerged as a promising technology for network 
programmability and experiments. In this work, we focus on virtual network embedding in 
multiple controllers SDN network. In SDN virtualization environment, virtual SDN networks 
(vSDNs) operate on the shared substrate network and managed by their each controller, the 
placement and load of controllers affect vSDN embedding process. We consider controller 
placement, vSDN embedding, controller adjustment as a joint problem, together considering 
different quality of service (QoS) requirement for users, formulate the problem into 
mathematical models to minimize the average time delay of control paths, the load imbalance 
degree of controllers and embedding cost. We propose a heuristic method which places 
controllers and partitions control domains according to substrate SDN network, embeds 
different QoS constraint vSDN requests by corresponding algorithms, and migrates switches 
between control domains to realize load balance of controllers. The simulation results show 
that the proposed method can satisfy different QoS requirement of tenants, keep load balance 
between controllers, and work well in the acceptance ratio and revenue to cost ratio for vSDN 
embedding. 
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1. Introduction 

Network virtualization has been regarded as a fundamental technology for the next 
generation Internet [1, 2]. By the mechanism of resource abstraction and isolation， network 
virtualization allows multiple virtual networks (VNs) to operate on the shared substrate 
network (SN) simultaneously. Software-defined networking has emerged as a promising 
technology for network programmability and experiments. It decouples the control plane and 
the data plane, and guides forwarding devices by a logically centralized controller [3]. The 
virtualization of SDN network is the combination of these two technologies and has gained 
considerable attention from both industry and academia in recent years. It provides convenient 
means for testing new algorithms, protocols and network architectures, helps shorten the 
cycles of network configuration.  

The SDN virtualization platform based on transparent proxy is the central method to 
realize the virtualization of SDN network. FlowVisor [4], ADVisor [5], CoVisor [6] are 
representations. In this mode, transparent proxy sits between the control plane and data plane, 
and acts as the network virtualization layer. Transparent proxy slices the substrate SDN 
network along multiple dimensions: topology, bandwidth, switch CPU, and flow tables. Each 
slice has its own view of virtual topology and the associated controller. Controller defines and 
manages the routing policy and resources of slice. We consider a slice along with its associated 
controller as a virtual SDN network (vSDN).  

The main work of SDN virtualization platform are slicing and embedding. Slicing 
identifies and isolates each vSDN from others to allow multiple vSDNs running their own 
applications distinctively. Embedding is to embed nodes and links of vSDN to the switches 
and paths of substrate SDN network on the basis of resources and topology constraints [7]. 
There is an improtant difference between traditional VN embedding and vSDN embedding, 
vSDN embedding should take the problem of controller placement into consideration. 

In SDN virtualization environment, controller is usually placed at the same position of 
switch. Controller placement is to find the optimal switch location for controller to minimize 
the controller-to-switch delay. As a result, the controller can communicate effectively with all 
the switches, and react quickly to network events [8].  

In single controller SDN architecture, controller manages the embedding and operating 
of all vSDNs, time delay is the main challenge to place controller. However, there is reliability 
and scalability problem for single controller architecture. To further improve scalability, 
reliability and performance of network, it is recommended to deploy multiple controllers in 
SDN architecture since OpenFlow (OF) protocol v1.2. In this way, multiple controllers 
cooperate to manage the SDN network in a physical distributed but logic-centralized form. 
However, the problem of placing multiple controllers is introduced [9, 10]. Time delay is a key 
factor to multiple controllers placement; besides, during vSDN embedding, virtual nodes of 
vSDNs are embedded to switches randomly due to the position and resource constraints, thus 
the resource consumption of switches are significantly different, and leads to load imbalance 
among controllers. The overload of controllers has negative effects on network stability. It is 
important to adjust controllers’ load dynamically to avoid overload.  

In this paper, we focus on designing vSDN embedding techniques in SDN environment. 
In contrast to previous work, we consider controller placement, vSDN embedding and 
controller load balance together for the first time. Besides, as the different quality of services 
(QoS) requirements of tenants, we provide two-level QoS for vSDN requests which require 
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time delay constraint of both controller-to-switch connection and virtual link. The problem is 
described as different QoS constraint vSDN embedding under multiple controllers.  

To solve the problem, we formulate the controller placement and adjustment problem 
into a multi-objective nonlinear integer program (NLIP) to optimize the average time delay of 
controller-to-controller, the average time delay of controller-to-switch, and the load imbalance 
degree of controllers. We formulate different QoS constraint vSDN embedding problem into 
an integer linear program (ILP) to optimize the embedding cost.  

Due to the NP-hard nature of the problem, we design a heuristic method. Our method 
consists of three aspects: the Controller Placement method based on Immune optimization 
Algorithm (IACP), vSDN embedding algorithm, and the Controller adaptive Adjustment 
algorithm based on Threshold (TCA). In our method, firstly, controllers are placed and control 
domains are partitioned by IACP, according to substrate SDN network and the number of 
controllers. Secondly, once vSDN request arrives, it will be embedded by corresponding 
algorithm according to its QoS requirement. Thirdly, once controller is overload after 
embedding, switches of overload controller will be migrated to other control domain by TCA. 
The method coordinates the relationship between controller placement, vSDN embedding and 
controller adjustment. Simulation result shows that our method satisfies different QoS 
requirement of tenants, works well in the acceptance ratio and revenue to cost ratio for vSDN 
embedding, and realizes controller load balance. 

In summary, the main contributions of this paper can be summarized as follows: (1) To 
the best of our knowledge, we make the first attempt to study the vSDN embedding problem 
under multiple controllers. (2) We formulate the controller placement and adjustment problem 
into a NLIP formulation, formulate different QoS constraint vSDN embedding problem into 
an ILP separately, and design a heuristic method to solve the problem. (3) We evaluate the 
performance in terms of acceptance ratio, revenue to cost ratio of vSDN embedding, load 
imbalance degree of controllers. Simulation results demonstrate the effectiveness of the 
proposed method, and we analyze the effects of each aspect of method on the performance. 

The rest of paper is organized as: we discuss the related works in section 2. Section 3 
gives the architectures of OpenFlow based multiple controllers SDN network, SDN 
virtualization, and the vSDN embedding model. Section 4 describes the NLIP and ILP 
formulations. Section 5 presents our method. Section 6 describes simulation results and 
analysis. The paper is concluded in section 7. 

  

2. Related Work 
There are three kinds of existing work related to our work: the controller placement, controller 
load balance in multiple control domains and VN embedding. 

The controller placement problem is a pre-planning problem of SDN, it was first 
proposed in [8], where authors solved how many and where to place controllers. They solve 
the problem by minimizing average latency and maximum latency from switches to 
controllers. Yao et al. in [9] consider both propagation delay and transmission delay, formulate 
the controller placement as an optimization problem. They present two algorithms based on 
greedy and Dijkstra algorithms to solve the problem. Hu et al. in [10] present a metric to 
characterize the reliability of SDN control network, and develop several heuristic placement 
algorithms. However, the methods mentioned above are all static placement without 
considering the change of network traffic, which lead to load imbalance among controllers.  
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Dynamic switch migration scheme can help load balance for controllers and optimize 
network management. Bariin et al. in [11] formulate the optimal controller provision problem 
as an integer linear problem and propose two heuristic algorithms. Dixit et al. in [12] propose a 
detailed migration mechanism to assign switches to controller dynamically. Yao et al. in [13] 
define a controller placement metric considering the switch degree and the delay from 
switches to controller, propose a dynamic switch migration algorithm to adapt to the flow 
dynamics, and realize controller load balance in multiple SDN domains. These works are 
designed for SDN architecture but not for SDN virtualization architecture, in which vSDN 
embedding and its effects on controller’s load should be taken into consideration, and novel 
adjustment method need to be developed for realizing load balance of controllers. 

There are many previous works focus on VN embedding problem in traditional network, 
and many VN embedding algorithms are proposed with different objectives or constraints 
[14-18]. Cui et al. in [16] introduce the node connection-degree based on virtual topology 
connection feature, it helps increase the utilization efficiency of substrate network. Ding et al. 
in [17] introduce betweenness centrality to sort virtual nodes, introduce correlation properties 
between substrate nodes to coordinate the process of node embedding and link embedding. 
Liao et al. in [18] consider topology attributes of substrate and virtual networks through 
multiple characteristics to better coordinate node and link embedding. As the distinctions of 
SDN environment, these method cannot be directly applied to the SDN virtualization 
environment, and novel embedding method need more efforts.  

There are also a few studies focus on VN embedding in SDN network [19-22]. Mijumbi 
et al. in [20] consider the load balance of nodes and links together, and propose a flow 
migration method based on real-time network state, which dynamically manage the node and 
link resources in SDN virtualization environment. Mehmet et al. in [21] tackle virtual node 
and link embedding, and controller placement together, develop techniques to perform 
embedding with two goals: balancing the load on the substrate network and minimizing 
controller-to-switch delays. Gong et al. in [22] propose an online vSDN embedding algorithm, 
which embeds the controller and the virtual nodes to the substrate nodes at the same time by 
considering both of controller-to-switch delay and link embedding, then virtual links are 
embedded by k-shortest path algorithm. However, these method are all based on single 
controller architecture. 

In multiple controllers SDN architecture, the control plane is distributed, and the 
architecture includes two categories: the flat control architecture [23-25], in which all the 
controllers are in equal status; the hierarchical control architecture [26], in which the control 
plane are layered as root controller and leaf controller. Tootoonchian et al. in [23] design and 
realize HyperFlow, which is a distributed and event-based OpenFlow controller. HyperFlow 
allows to place multiple controllers in network, offers extendibility and keeps the 
centralization of network control logic by sharing the coincident network view between all 
controllers. Hassas et al. in [26] propose Kandoo, which is two-layer controller architecture. In 
Kandoo, bottom controllers are isolated from each other and have no idea about the network 
view, they are all connect to the top controller. The top controller is logically centralized and 
maintain the global network view. By this way, bottom controllers handle local events and 
screen local messages to the top, which reduces the cost of top controller.  

In this study, we combine controller placement, controller adjustment and vSDN 
embedding together for embedding vSDN in multiple controllers SDN network. 
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3. System Model 

3.1 Problem Description 
Fig. 1 shows the multiple controllers SDN network architecture based on OpenFlow, which 
consists of forwarding plane and control plane. OF switches in forwarding plane maintain their 
own flow table structures, manage and forward packets according to flow tables. Controllers 
in control plane compute and assign forwarding flow rules to OF switches via the southbound 
interface, i.e., OpenFlow. Moreover, the controllers are responsible for network management, 
including the resource scheduling of forwarding plane, network topology maintenance and 
real-time update of network status. 
 

 
Fig. 1. OpenFlow based multiple controllers SDN architecture 

 
We take FlowVisor as an example to illustrate the SDN virtualization based on 

transparent proxy and vSDN network embedding, as shown in Fig. 2. The proxy FlowVisor 
transmits all the control and status messages, it interjects between the forwarding plane and 
control plane. vSDNs coexist on the shared substrate SDN network and are isolated from each 
other. Each vSDN owns its managing controller and the set of virtual nodes and links. A 
virtual node is hosted on a particular OF switch, and a virtual link spans over a path in the 
underlying substrate SDN network. In Fig. 2, virtual nodes of vSDN1 are embedded to A, B 
and C, virtual links are embedded to AB and BC, the controller- to-switch connection, i.e., the 
red dashed lines are pre-assigned in SDN network. 
 

 
Fig. 2. Architecture of SDN virtualization 
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3.2 Network Model 
Substrate SDN network We model the multiple controllers substrate SDN network by a 
weighted undirected graph ( , , , )S S C S CN N L L=G , where SN , CN , SL , CL  represent the sets of 
substrate node (OF switch), controller, substrate link and control path respectively, the control 
path includes controller-to-switch connection and controller-to-controller connection.  

For each substrate node s sn N∈ , we take the available CPU, available ternary 
content-addressable memory (TCAM) capacity and position as its attributes, which are 
denoted by ( )scpu n , ( )stcam n  and ( )sloc n ; TCAM is used for flow table storage and 
processing, ( ) ( , )s s sloc n x y=  is a two-dimensional coordinate. For each controller c Cn N∈ , we 
take control domain and load as its attributes and denote them by ( )cCA n  and ( )cAtcam n , 

( )cCA n  includes the OF switches that are managed by cn , 
( )

( ) ( )
s c

c s
n CA n

Atcam n contcam n
∈

= ∑ , 

where ( )scontcam n  denotes the TCAM consumption of sn . For each substrate link s Sl L∈ , its 
attributes are available bandwidth and time delay, which are denoted by ( )sbw l  and ( )sdl l . For 
each control path c Cl L∈ , we take time delay as its attribute and denote it by ( )cdl l . 

Different QoS constraint vSDN request The request is modeled as a weighted 
undirected graph ( , , , )vSDN v v v vN L QoS T=G , where vN  and vL  represent the sets of virtual node 
and link.  

For each virtual node v vn N∈ , we take the requirement of CPU, TCAM, position and 
position constraint as its attributes and denote them by ( )vcpu n , ( )vtcam n , ( )vloc n  and ( )vD n  
respectively. For each virtual link v vl L∈ , we take the requirement of bandwidth as its attribute 
and denote it as ( )vbw l . vQoS  represents the QoS requirement of vG , in our work, we set 2QoS  
requirement as to satisfy the time delay constraint of both control path and virtual link. vT  
represents survival time of vG . 

Different QoS constraint vSDN embedding The embedding is defined as an 
embedding action M  from vSDNG  to a subset of sG , the embedding should meet the resource 
and QoS requirement of vSDN request, it is denoted as 

 : ( , , , )sub sub
v s s N LM G N L R R→                                                      (1) 

where sub
s sN N∈ , sub

s sL L∈ , NR  and LR  represent resources of switches and links that allocated 
to vSDN request. 

Different QoS constraint vSDN embedding under multiple controllers The problem 
consists of three aspects: controller placement, vSDN embedding, and controller adaptive 
adjustment for load balance.  

In our work, the controller placement is defined as: given the substrate network and the 
number of controllers, where should the controllers go and how to assign OF switches to each 
controller for best assignment. The vSDN embedding problem has been described above. 
Controllers are immobility in substrate SDN network once they are placed, and OF switches 
are assigned to different control domains. During vSDN embedding, the TCAM consumption 
of OF switches changes, which leads to the load change of controllers. Controller adaptive 
adjustment is defined as: how to adjust the management relationship between controllers and 
switches dynamically, to realize load balance of controllers. 
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4. Mathematical Model 

4.1 Objectives  
The main goal of different QoS constraint vSDN embedding is to make full use of substrate 
network resources, accept more vSDN requests while satisfy their QoS requests, increase 
revenue and reduce cost. The optimization objectives include: 

Average time delay of control path  
The time delay of controller-to-switch connection affects the response speed of controller 

to events of substrate SDN network. The time delay of controller-to-controller connection 
affects the information synchronization between controllers. The average time delay of control 
path is defined as  

1 1( ) ( ) ( )
c C cs CS cc CC

mean c cs cc
l L l L l LC C

T dl l dl l dl l
L L∈ ∈ ∈

 
= = +  

 
∑ ∑ ∑                          (2) 

where CL  is the number of control path, CSL  and CCL  represent the control path set of 
controller-to-switch and controller-to-controller respectively, C CS CCL L L=  , csl  and ccl  
represent two kinds control path respectively. 

The acceptance ratio 
The acceptance ratio is defined as  

0

0

( )

( )
lim

T

map
t

T
T

t

vSDNR t

vSDNR t

=

→∞

=

∑

∑
                                                       (3)  

where ( )vSDNR t  is the number of vSDN requests that arrive at time t, ( )mapvSDNR t  is the 
number of vSDN requests that have been successfully embedded at time t. 

The revenue to cost ratio (R/C)  
Revenue of vSDNG  at time t is defined as 

( ) 1 1, ( ) ( ) ( )
v v v v v v

vSDN v v v
n N n N l L

R G t cpu n tcam n bw lγ α β
∈ ∈ ∈

 
= ⋅ + +  

 
∑ ∑ ∑                      (4) 

where γ  is the revenue weight of different QoS constraint vSDNG . In our work, we set 1.2γ =  
for 2QoS  and 1γ =  for 1QoS . 1α  and 1β  are weighting coefficient to balance the relative 
revenues from TCAM, bandwidth and CPU, we set 1 1α = , 1 1β = . 

Cost of vSDNG at time t is defined as 

( ) 2 2, ( ) ( ) ( ) ( ) ( )
v v v V s L v vv

vSDN v v s v v
n N n N n P l L

Cost G t cpu n tcam n tcam n hops l bw lα β
∈ ∈ ∈ ∈

 
= + + + ⋅  

 
∑ ∑ ∑ ∑    (5) 

where 
vLP  denotes the total substrate paths of vSDNG . ( )

s Lv

s
n P

tcam n
∈
∑  is the TCAM consumption 

of substrate nodes that paths span. ( )vhops l  is the total hop counts of path that vl  embed to. 
2α and 2β  are weighting coefficient to balance the relative costs from TCAM, bandwidth and 

CPU, we set 2 1α = , 2 1β = . 
So the R/C is defined as 
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( )

( )

0 ( )

0 ( )

,
/

,
lim vSDN map

vSDN map

T

vSDN
t G vSDN t

T
T

vSDN
t G vSDN t

R G t
R C

Cost G t

= ∈

→∞

= ∈

=
∑ ∑

∑ ∑
                                          (6) 

The load imbalance degree of controllers  
We define the load imbalance degree of controllers as the variance of each controller’s 

load relative to the average load, as illustrated in Eq. 7.  
1
2

2( ( ) ( ))
C

c

N

c c
n

C

Atcam n Atcam n
D

N

 
− 

 =  
  
 

∑
                                        (7) 

where ( )cAtcam n  is the average load of controllers. 

4.2 Mathematical Model  
In this section, we formulate the controller placement and adjustment problem into a 
multi-objective Nonlinear Integer Program as follows. 

Objectives: 
min meanT                                                             (8) 
min D                                                                 (9) 

Multiple controller placement constraints: 

S

j C
j N

y N
∈

=∑                                                                (10) 

1; 0,
C

ij i S
j N

x i y i N
∈

= ∀ = ∈∑                                                   (11) 

,

1
2

c

C
ij C

i j V

N
x N

∈

−
=∑                                                        (12) 

( )cs csdl l t≤ ， cs CSl L∀ ∈                                                     (13) 
( )cc ccdl l t≤ ， cc CCl L∀ ∈                                                     (14) 
{ }, 0,1 ; ,i ij S Sy x i N j N∈ ∀ ∈ ∈                                              (15) 

The objectives of the NLIP try to minimize the average time delay of control path, and 
minimize the load imbalance degree of controllers, as is shown in Eqs. 8 and 9. Constraint 
(10) denotes that there are CN  nodes in SN  are selected to place controllers. Constraint (11) 
denotes that for one node there is only one controller-to-switch connection access to control 
plane; constraint (12) denotes the number of controller-to-controller connections. 
Constraints (13) and (14) are time delay constraint of two type control paths. In constraint 
(15), 1iy =  denotes a controller is placed in the position of node i , otherwise 0iy = ; 1ijx =  
denotes 1iy =  and node i  is assigned to controller j , or 1i jy y= =  and controller i  is 
connect to controller j , otherwise 0ijx = . 

We formulate the problem of different QoS constraint vSDN embedding into an Integer 
Linear Program as follows. 
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Objective: 
( )min vSDNCost G                                                    (16) 

Node embedding constraints: 
,i v j Sn N n N∀ ∈ ∀ ∈ : 

( ) ( )i
j i jx cpu n cpu n⋅ ≤                                                       (17) 

( ) ( )i
j i jx tcam n tcam n⋅ ≤                                                     (18) 

( ( ), ( )) ( )i
j i j ix dis loc n loc n D n⋅ ≤                                              (19) 

1
j S

i
j

n N
x

∈

=∑ ， 1
i v

i
j

n N
x

∈

≤∑                                                    (20) 

Link embedding constraints: 
ij Sl L∀ ∈ ： 

( ) ( )
uw V

uw
ij uw ij

l L
f bw l bw l

∈

⋅ ≤∑                                                    (21) 

,j S uw Vn N l L∀ ∈ ∈ ： 

1, 1
1, 1

0,ji S ij S

u
j

uw uw w
ji ij j

l L l L

x
f f x

∈ ∈

 =
− = − =



∑ ∑
otherw ise

                                       (22) 

QoS constraint: 

2QoS ： 
1( )vc csdl l t≤ ， vc vSDNl G∀ ∈                                             (23) 

( )v pdl l t≤ ， v vl L∀ ∈                                                 (24) 
Variable domain constraint: 

,i v j Sn N n N∀ ∈ ∀ ∈ ： { }0,1i
jx ∈                                        (25) 

,j S uw Vn N l L∀ ∈ ∈ ： { }0,1uw
jif ∈                                       (26) 

The objective of the LIP tries to minimize the cost of vSDN embedding, as is shown in 
Eq. 16. Constraints (17), (18) and (19) denote the constraints of CPU, TCAM and position 
respectively. Constraint (20) ensures that each virtual node in vSDN request must be 
embedded to just one substrate nodes. Constraint (21) is the bandwidth constraints. 
Constraint (22) is the connectivity constraint. Constraints (23) and (24) are time delay of 
control path and virtual link for 2QoS  request, as for 1QoS  request, there is no time delay 
constraint. Constraints (25) and (26) denote the binary domain for the variables i

jx  and uw
jif . 

5 Heuristic Method Design 
The NLIP model and the ILP model are both NP-hard problem, thus, different QoS constraint 
vSDN embedding under multiple controllers is NP-hard, too. In this section, a heuristic 
method is proposed to solve the problem.  

Firstly, by using the Controller Placement method based on Immune optimization 
Algorithm, controllers are placed and control domains are partitioned according to substrate 
SDN network and the number of controllers. Secondly, when vSDN requests arrive, each 
vSDN request is embedded by corresponding algorithm according to its QoS requirement. 
Thirdly, once vSDN is successfully embedded and substrate network resources are consumed, 
whether the load of controllers exceed threshold or not will be judged. If there is controller be 
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overload, OF switches from overload control domain will migrate to lightly load control 
domain. Which switches to select and where to go are calculated by Controller adaptive 
Adjustment algorithm based on Threshold. 

5.1 Controller Placement Method Based on Immune Optimization Algorithm  
Immune optimization algorithm is introduced into the IACP method to resolve controller 
placement problem. Immune optimization algorithm applies whole search strategy and 
emphasizes information exchange between the colony. The operation of IACP cycles the 
process of initial antibody population generating, evaluation criterion calculation, individual 
information exchange among population, and new antibody population generating. Then an 
optimal solution can be obtained after cycling. 

Fig. 3 illustrates the process of IACP, and the specific steps are as follows. 
1) Network information initialization, including the substrate SDN network information 

and the set of controllers. 
2) Initial antibody population generating. The feasible solution of controller placement 

problem is expressed as an antibody through encoding, and the initial antibody population are 
generated randomly in solution space. 

In our work, the antibody population is represented by An , and its number is An . iX  
represents antibody, indicating a scheme of controller placement. The length of iX  is CN , 
which is the number of controllers. We set iX  as 

1 2[ , , ... ]
Ci i i i N= x x xX ， { }1,2,...,ij Sx N∈                               (27) 

where ijx  is the serial number of a switch. ijx  represents controller jn is placed at the position 
of the switch in . For iX , the set of control paths is denoted by 

i i iX C X CC X CSL L L=  . For 

icc X CCl L∀ ∈ , ccl  denotes the controller-to-controller connection, and it is the shortest time 
delay path between controllers in iX . For 

ics X CSl L∀ ∈ , arg min ( , )
c C

cs s cn N
l dl n n

∈
= , in which csl  

denotes the controller-to-switch connection of sn . If the shortest time delay path from sn  to 
controller cn  is shortest in all the paths from sn  to all controllers, then csl  is the shortest time 
delay path from sn  to controller cn , and sn  is belonged to the control domain of cn , i.e. 

( )s cn CA n∈ . 
For 

icc X CCl L∀ ∈ ，
ics X CSl L∀ ∈ , whether the antibody satisfies Eqs. 13 and 14 is judged, 

new antibody will be generated if the constraints are not satisfied for iX . 
3) Calculating the fitness value 

iXA , the antibody affinity ,i jX XS and the concentration 

iXC  of iX , according to Eqs. (28, 29, 30). 

1
( )i

c X Ci

C
X

mean c
l L

L
A

T dl l
∈

= =
∑

                                                      (28) 

,
,

i j

i j

X X
X X

C

k
S

N
=                                                              (29) 

,
1

i i j
j

X X X
X An

C S
An ∈

= ∑ ，
,

,

1,

0,
i j

i j

X X
X X

S
S

otherwise

ω>= 


                                (30) 

where ,i jX Xk  denotes the number of the same elements in iX  and jX , ω  is threshold. 
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4) Calculating the reproduction probability constant of antibody, we denote it as ( )iP X . 

( ) (1 )i i

i i

X X
i

X X

A C
P X

A C
ε ε= + −
∑ ∑

                                               (31) 

where ε  is a constant. 
5) The crossover, selection and mutation operation of antibody, and new antibody 

population is produced, then return to step 2) to circle. 
Network information initialization

Antibody initialization

Calculate  fitness and concentration

Satisfy finish 
condition

Antibody generate
(crossover, selection and mutation)

Elitist selection

Result output

Y

N

Calculate reproduction probability

 
Fig. 3. Process of IACP 

5.2 Different QoS Constraint vSDN Embedding Algorithm  
In our work, for 2QoS , we design two algorithms: the vSDN embedding algorithm for cost 
optimization (CO-vSDNE) and vSDN embedding algorithm for time delay optimization 
(DO-vSDNE). For 1QoS , we design the vSDN embedding algorithm for minimum cost 
(MC-vSDNE).  

Three algorithms are all two-step embedding algorithm that embeds virtual nodes first, 
and then embeds virtual links to paths in substrate SDN network. The difference is that: 
CO-vSDNE sastifies time delay constraint for 2QoS , and focuses on minimizing embedding 
cost. DO-vSDNE sastifies time delay constraint for 2QoS , and focuses on minimizing time 
delay of virtual links. MC-vSDNE doesn’t consider time delay constraint, and focuses on 
minimizing embedding cost. The difference of the three algorithms in embedding process 
including: candidate substrate nodes selecing in node embedding process, and shortest path 
calculating in link embedding process. 

1) Node embedding 
In node embedding stage, the virtual nodes are sorted first, then for each virtual node to 

be embedded, its candicate substrate nodes are sorted and selected. 
To sort virtual nodes, we define function R  to calculate resource requirement of virtual 

nodes.  
( ) ( ) ( )

( )
( ) ( ) *

v v

v v v v
l L n

R n cpu n tcam n bw l
∈

= + ∑                             (32) 

where ( )vL n  denotes the set of adjacent links of vn . 
The virtual nodes sorting process is as follows: firstly, calculating R  of all virtual nodes, 

virtual node with maximum R  is selected as the root node to run Breadth First Search (BFS) 
algorithm. Secondly, the rest virtual nodes are divided into sets 1

vnΩ , 2

vnΩ ,…,
v

n
nΩ , where 

v

i
nΩ  

represent the set in which nodes are i  hop counts from root node. Thirdly, sorting nodes in 
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descending order in each set according to R , and then the last embedding sequence of virtual 
nodes is build.  

For each virtual node to be embedded, its candidate substrate nodes are sorted by 
considering their resources and connectivity, as Eq. 33.  

( ) ( )
( )

s
s

s

R n
NF n

Dis n µ
=

+
                                                            (33) 

where ( )sR n  is calculated by Eq. 31, µ  is a small positive number to prevent the 
dividend being zero, ( )sDis n  is the distance parameter of sn . Virtual node will be embedded to 
the substrate node with max NF. 

For CO-vSDNE, the process of calculating ( )sDis n  is as follows: firstly, for virtual node 
vin  that to be embedded in turn, substrate node which satisfies constraints (13, 17, 18, 19) is 

selected to its candicate substrate node set, and the set is denoted as ( )viCan n . Secondly, 
another set is generated with substrate nodes which are embedded by the virtual nodes directly 
connected to vin , and the set is denoted as ( ) { , ( , ) 1}vi s v s v viEmbed n n n n hops n n= ↑ = , where 

v sn n↑  denote that vn  is embedded to sn , ( , ) 1v vihops n n =  denote that vin  is directly connected 
to vn in vSDN request. Thirdly, the connectivity parameter of each candidate substrate node is 
defined as 

( )
( ) ( , )

k vi

s s k
n Embed n

Dis n hops n n
∈

= ∑ , ( )s vin Can n∈                                   (34) 

For DO-vSDNE, its connectivity parameter is calculated according to time delay, as Eq. 
35. 

( )
( ) ( )

k vi

s sk
n Embed n

Dis n dl l
∈

= ∑ , ( )s vin Can n∈                                         (35) 

For MC-vSDNE, substrate nodes that satisfy constraints (17, 18, 19) are selected as 
candicate substrate node set of vin , i.e. the time delay is not considered, and other parts of node 
embedding process are same with CO-vSDNE. 

The details of node embedding algorithm is shown in Algorithm 1. 
 

Algorithm 1 Node Embedding Algorithm 
Input: Substrate network sG ,Virtual network request vSDNG  
Output: Node embedding NM  
1. for each virtual node v vn N∈  
2.    Calculate ( )vR n   
3. end for 
4. Take vn  with max R  as root node, run BFS, divide the remaining nodes into sets 

1

vnΩ , 2

vnΩ ,…,
v

n
nΩ  

5. Sort nodes in 
v

i
nΩ  in descending order according to their ( )vR n   

6. Record the virtual nodes embedding sequence into VirtualNodeList 
7. for each vn  in VirtualNodeList do 
8.    Generate candidate node set ( )viCan n  
9.    if ( )viCan n is empty 
10.       Return NODE_EMBEDDING_FAILED 
11.    else   Generate the embedded substrate node set ( )viEmbed n  
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12.       for each sn  in ( )viCan n  
13.           Calculate ( )sNF n  
14.       end for 
15.       Embed vn  to sn  with max NF, namely ( )N

v sM n n=  
16.    end if 
17. end for 
18. return NODE_EMBEDDING_SUCCESS 

 
2) Link embedding 
In link embedding stage, we adopt shortest path algorithm to embed virtual links to 

substrate paths, as shown in Algorithm 2. The difference is that: CO-vSDNM takes hop least 
path which sastifies the time delay constraint as the result of link embedding. TO-vSDNM 
takes time least path which sastifies the time delay constraint as the result of link embedding. 
MC-vSDNM takes the hop least path without considering time delay as the result of link 
embedding. 

 
Algorithm 2 Link Embedding Algorithm 

Input: Substrate network sG ,Virtual network request vG ,Node embedding NM  
Output: Link Embedding LM  
1. for each virtual link uv vl L∈  to be embedded do 
2.    Search the shortest path between node u  and v  in substrate, record it as uvP  
3.    if request is 2QoS  & ( )uv ssdl P t>  then 
4.        return LINK_MAPPING_FAILED 
5.    else  Embed uvl  to uvP , namely ( )L

uvM l p=  
6.    end if 
7. end for 
8. return LINK_EMBEDDING_SUCCESS 
 

5.3 Controller Adaptive Adjustment Algorithm Based on Threshold  
We design the TCA algorithm to migrate switches from overload controller domain to lightly 
load controller domain. The process is as follows. 

1) Beginning time of adjustment: once a vSDN request is successfully embedded, if there 
is c cn N∈  whose ( )cAtcam n η> , the first adjustment circle starts, η  is a pre-set threshold.  

2) The control domain to move out: ( )( ) arg max ( )
c C

c cn N
CA n Atcam n

∈
= , i.e. , control domain 

with heaviest load, then its switches will be moved out. 
3) Number of switches to be moved out: the heaviest and lightest load controllers are 

denoted by ,maxcn and ,mincn  respectively, then ,max ,min[ ( ) ( )] / 2TCAM c cAtcam n Atcam n∆ = −  is 
calculated. We migrate switches of ,maxcn  until the TCAM consumption of all migration 
switches is more than TCAM∆ . 

4) The control domain to move in, the migration switches and the constraint for switch 
moving: switches from the heaviest load control domain ,max( )cCA n  are moved to the lightest 
load control domain ,min( )cCA n . Firstly, Switches in ,max( )cCA n  are sorting according to their 
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time delay to ,mincn , switch that meets ,min( , )s c csdl n n t≤  is moved to ,min( )cCA n  in turn until the 
TCAM consumption of migration switches is more than TCAM∆ .  

Secondly, if there is no more switch in ,max( )cCA n  meets ,min( , )s c csdl n n t≤  and the TCAM 
consumption of all migration switches is still less than TCAM∆ , the second lightest load 
controller ,min 2cn  is selected to move switches in. Residual switches in ,max( )cCA n  are sorting 
according to their time delay to ,min 2cn , and circle the migration process until the condition of 
step 3) is satisfied. 

5) The time to end: once the first adjustment circle is finish, if there is c cn N∈ , whose 
( )cAtcam n η> , then start the second adjustment circle. If the total counts of adjustment circle 

is more than / 2CN , then the adjustment process is finished. By this way, the condition of 
repeatedly adjustment is avoided. 

We design the controller adaptive adjustment algorithm by considering: firstly,the 
adjustment is triggered by threshold rather than periodic, which is more flexible and timely. 
Secondly, controller whose load exceeds threshold will migrate rather than execute load 
balance in all controllers, which help reduce the number of migration switches, and maintain 
network stability. Thirdly, migration switches are selected according to their time delay to 
target controller rather than their load, the position of selected switches are near to the 
boundary of control domain, which is conducive to maintain the continuation of control 
domain. The details of TCA algorithm are shown in Algorithm 3. 

 
Algorithm 3 TCA Algorithm 

Input: Control domain ( )cCA n ，Control load ( )cAtcam n   
Output: Control domain ( )n cCA n  
1. 1count = ， 1 1k =  

2. while  c cn N∃ ∈ ， ( )cAtcam n η>  & / 2Ccount N<  
3.       Sort all control domains in ascending order according to their ( )cAtcam n  as ,1( )cCA n , 

,2( )cCA n , …, ,( )c kCA n , calculat TCAM∆  
4.        while  1 TCAM∆ < ∆  & 1 1ck N< −  
5.             Sort switches in ,( )c kCA n  according to their time delay to ,1cn  
6.             Migrate ,( )s c kn CA n∈  that sastify , 1( , )s c k csdl n n t≤  to 1( )kCA n  in turn ， calculate 

1 ( )scontcam n∆ =∑  
7.             1 1 1k k= +  
8.        end while 
9.        1count count= +  
10. end while 
 

6. Performance Evaluation and Analysis 

6.1 Simulation Environment 
A simulator using Matlab to evaluate the performance of our method was developed. Substrate 
SDN network is composed by 100 nodes and about 500 links. The positions of nodes follow a 
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uniform distribution in the scope of 1000 1000L L× = × . The initial CPU, TCAM of substrate 
nodes and bandwidth of substrate links are real numbers following a uniform distribution 
between 50 and 100. Time delay of substrate links is calculated by ( ) 3 ( ) / 2s sdl l d l c= , where 

( )sd l  denotes the length of sl , we set 3 5c e= . Number of controllers is 5, the threshold to 
trigger controller adjustment is set as 500η = . 

The number of virtual nodes in each vSDN request is uniformly distributed between 5 
and 15. Positions of nodes follow a uniform distribution in the scope of 1000 1000L L× = ×  and 
all position constraints are set as 300. The required CPU and bandwidth are real numbers 
uniformly distributed between 10 and 30. We set the required TCAM of each virtual node as 

( ) 1v vtcam n N= − , the TCAM consumption of substrate nodes that virtual links span is set as 
( ) 2stcam n = . The vSDN requests arrive by the Possion distribution with the rate of 10 per 100 

time units, and the lifetime follows an exponentially distribution with the mean of 200 time 
units. Simulations were run 3000 time units to reach a stable state, which contain about 300 
vSDN requests, of which 2QoS  requests account for 1/3, i.e, there is about 100 2QoS  requests. 

The parameters that we use in our simulations are summarized in Table 1. 
Table 1. Parameters in simulations  

 Parameters Values 

SG  

Number of substrate nodes 100 

Positions of substrate nodes 
a uniform distribution in the scope of 

1000 1000L L× = ×  
Number of substrate links about 500 

CPU and TCAM of substrate node 
bandwidth of substrate link 

A uniform distribution from 50 to 100 

Time delay of substrate link ( ) 3 ( ) / 2s sdl l d l c=  

CN  Number of controllers 5 

vSDNG  

Number of virtual nodes A uniform distribution from 5 to 15 

Positions of virtual nodes 
a uniform distribution in the scope of 

1000 1000L L× = ×  
Position constraints of virtual 

nodes 
( ) 300viD n =  

CPU of virtual node 
bandwidth of virtual link 

A uniform distribution from10 to 30 

TCAM of virtual node 
( ) 1v vtcam n N= −  for virtual node 

( ) 2stcam n =  for substrate nodes that virtual links span 
vSDN 
events 

Arrival rate of VN requests 10 per 100 time units 
Lifetime of VN request 200 time units exponentially distribution 

η  threshold to trigger 500  
 
Based on the parameters setting above, the time delay of substrate links is distributed in 

the scope of [1.9049e-4, 1.2e-3], the time delay of shortest path between each substrate node 
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pairs is distributed in the scope of [1.9049e-4, 6.5e-3]. In our work, we set time delay 
constraint of controller-to-controller and controller-to-switch as 0.002cct =  and 0.003cst =  
respectively. For 2QoS , the time delay constraints for controller-to-switch and virtual link are 
set as 1 0.0015cst =  and 0.004pt =  respectively. The parameters setting of the four time delay 
constraint is based on that, the ratios of shortest path time delay between each substrate node 
pairs which sastify ( ) 0.002sdl P < , ( ) 0.003sdl P < , ( ) 0.0015sdl P <  and ( ) 0.004sdl P <  are about 
32%, 54%, 22% and 80% seperately. Based on that, we evaluate our method for embedding 
different QoS constraint vSDN under multiple controllers. 

To avoid the disturbance of random factors to the experimental results, each simulation is 
carried out for 10 times, and the average value was recorded as the final results. 

Fig. 4 illustrates the flow chart of simulation. Modules of controller placement, vSDN 
embedding and controller adjustment are designed in Section 5. Simulation inputs including: 
Substrate SDN network, set of controllers, vSDN sequence (the set of vSDN requests), vSDN 
events which record the arrive time, survival time and end time of all vSDN requests. At 
beginning, controllers are placed and control domains are partitioned according to SG and CN , 
then simulation starts.  
 

,sGinput CN

Controller placement

1QoS

vSDN embedding 
algorithm 1

Success

Y
vSDN embedding 

algorithm 2

N

Y

Substrate network 
resources consumption

N

N

Y

0( )cAtcam n ω>N

Controller adaptive adjust
Y

End

vSDNG end Substrate network 
resources release

Y

N

vSDN embedding 
with different 
QoS request

Controller adaptive 
adjustment with 
threshold trigger

Controller placement 
based on immune 

optimization algorithm

vSDN sequence, 
vSDN events

Time start

vSDNG arrive
Y

Time end

t=t+1

 
Fig. 4. Flow chart of simulation  

 
We set average time delay of control path, load balance and embedding cost as the 

optimal objects. As there are no existing algorithms that tackle the problem, we compare our 
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method with its three variations to evaluate performance. The method is consist of three 
aspects, we set BM1 as the baseline method which places controllers by IACP, embeds 2QoS  
request by CO-vSDNM, embeds 1QoS  request by MC-vSDNM, and adjusts controllers by 
TCA. BM2 embeds 2QoS  request by CO-vSDNM, other steps are the same with BM1. We set 
comparison method CM1 which embeds all vSDN requests by TF-SVNM [16] without 
considering the time delay constraint; CM2 places controllers by a random way which is set to 
evaluate the effect of controller placement on embedding. The comparison of the four methods 
is listed in Table 2. 

 
Table 2. Methods comparison 

Methods 
Description 

Controller 
placement 

2QoS  request 
embedding 

1QoS  request 
embedding 

Controller 
adjustment 

BM1 IACP CO-vSDNE MC-vSDNE TCA 
BM2 IACP DO-vSDNE MC-vSDNE TCA 
CM1 IACP TF-vSDNE TF-vSDNE TCA 
CM2 Random placement CO-vSDNE MC-vSDNE TCA 
 

6.2 Simulation Results 

1） Acceptance ratio and R/C of vSDN requests 
Fig. 5 (a) illustrates the acceptance ratios of four methods. The acceptance ratio of BM1 

(about 80%) is better than others, follow is CM2 (about 76%), then are BM2 (about 74%) and 
CM1 (about 72%). The reason for the better performance of BM1 than CM2 is that the 
controllers are placed more reasonable, and it is easier to meet the time delay constraint by 
BM1. Performance of BM1 is better than BM2, which shows that the strategy of cost 
optimization is better than time delay optimization for 2QoS  request embedding.  

Fig. 5 (b) illustrates the R/C of four methods. The R/C of BM1 (about 0.53) is best, the 
follow is CM2 (about 0.51), then are BM2 (about 0.49) and CM1 (about 0.42). The better 
performance of BM1 is due to BM1 embeds two kinds vSDN requests all by cost optimization 
embedding algorithms, which reduce the cost. The comparison result shows that BM1 has the 
best combination of strategies in controller placement, vSDN embedding and controller 
adjustment. BM1 has better performance than others in acceptance ratio and R/C. 
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(a) Acceptance ratio                                                       (b) R/C 

Fig. 5. Comparison between four method 
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2) Success number of different QoS constraint vSDN requests  

Table 3 shows the success number of different QoS constraint vSDN requests. In one 
experiment, the numbers of vSDN requests with 2QoS  and 1QoS  are 92 and 211 seperately. 
Obviously, BM1 embeds the most 2QoS  requests, its number is 56. This is because the 
restriction to embed 2QoS  request is more strict. BM1 embedding 2QoS  requests with less 
cost while satisfies time delay constraint, which is conducive for the embedding of later 2QoS  
requests. CM1 embeds all vSDN requests with minimum time delay of virtual links, which 
leads to the heavy load of key substrate links, and makes more difficult for later 2QoS  requests 
embedding. On the other hand, the results of 1QoS  request embedding of the four methods are 
similar. This is because 1QoS  request has no time delay constraint, the embedding is 
influenced only by the resource richness of substrate network. 

 
Table 3. Comparison of success number  

 BM1 BM2 CM1 CM2 

Total number 244 224 218 232 
2QoS  requests number 56 36 27 43 

1QoS  requests number 188 188 191 189 
 
By comparing the performance in Fig. 5 and Table 3, simulation results show that our 

method do well in the problem of different QoS constraint vSDN network embedding under 
multiple controllers. The performance comparison of BM1 and CM2 shows that controller 
placement affects the performance of vSDN embedding. Better placement helps sastify the 
time delay constraint. The performance comparison of BM1 and CM1 shows that links with 
short time delay in substrate SDN network are important for high QoS constraint vSDN 
request. The strategy of cost optimization reduces the occupancy of key substrate link while 
satisfies the time delay constraint, which helps the embedding for high QoS constraint vSDN 
requests. 
 
3) Load imbalance degree of controllers 

Fig. 6 shows the effect of TCA on controllers’ load. Figs. 6 (a) and (b) illustrate the time 
average of controller load before and after adjustment. Fig. 6 (c) illustrates the load imbalance 
degree of controllers at each time before and after adjustment. Fig. 6 (a) shows that loads of 
controllers are great inequality before adjustment. This is because controllers manage different 
switches, virtual nodes of vSDN requests are embedded to different switches and consume 
different amount of TCAM, all these lead to load imbalance of controllers. Then Fig. 6 (b) 
shows that the time average of load of the five controllers is very close. TCA improves load 
balance between controllers after adjustment. Fig. 6 (c) also shows that the load imbalance 
degree of controllers is apparently decreased after adjustment. Simulation results show that the 
TCA algorithm can improve the load balance of controllers and avoid overload. 
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Fig. 6. Effect of controller adjustment on load balance 

7. Conclusion 
In this paper, we study the problem of different QoS constraint vSDN embedding under 

multiple controllers. We establish the mathematical models both of the controller placement 
and adjustment problem, and the vSDN embedding problem. We propose a controller 
placement method based on immune optimization algorithm, design the node embedding 
algorithm and link embedding algorithm for different QoS constraint vSDN embedding, 
design the controller adaptive adjustment algorithm based on threhold to improve load balance 
of controllers. We analyze the performance of the method through simulation. Simulation 
results show that our method optimizes the placement of controllers, improves load balance, 
and satisfies user’s requirement for different QoS constraint vSDN service. The proposed 
method achieves good performance in terms of acceptance ratio and R/C for vSDN 
embedding. 

However, there are also some problems appeared in our work. Firstly, the way we abstract 
and apply the TCAM resource is simple, which need more efforts to insight to the mechanism 
of SDN. Secondly, we place the controllers to optimize the time delay of control paths 
according to the information of controller number and substrate SDN network. There are many 
more application scenes to explore other controller placement methods. Thirdly, we define 
function R to calculate resource requirement of virtual nodes and resource richness of 
substrate nodes, the function is too simple to describe the relationship between resources of 
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CPU, TCAM, and bandwidth. It needs more efforts to explore how to make the best of all 
kinds of resources. In the future work, we will extend our work to solve the problem 
mentioned above. Besides, we plan to consider the vSDN reconfiguration in our algorithm to 
further improve the embedding performance. 
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