
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, Sep. 2018 4144
Copyright ⓒ 2018 KSII

Different QoS Constraint Virtual SDN
Embedding under Multiple Controllers

Zhiyuan Zhao1, Xiangru Meng2, Siyuan Lu3 and Yuze Su2

132021 Troops
Haidian, Beijing100091 - China

[e-mail: zhaozhiyuan_0815@126.com]
2 College of Information and Navigation, Air Force Engineering University

Xi'an, Shanxi710077 - China
[e-mail: xrmeng@126.com]

3 Academy of military sciences
Haidian, Beijing100091 - China

[e-mail: 15668296999@163.com]
*Corresponding author: Xiangru Meng

Received April 8, 2017; revised October 11, 2017; accepted March 20, 2018;

published September 30, 2018

Abstract

Software-defined networking (SDN) has emerged as a promising technology for network
programmability and experiments. In this work, we focus on virtual network embedding in
multiple controllers SDN network. In SDN virtualization environment, virtual SDN networks
(vSDNs) operate on the shared substrate network and managed by their each controller, the
placement and load of controllers affect vSDN embedding process. We consider controller
placement, vSDN embedding, controller adjustment as a joint problem, together considering
different quality of service (QoS) requirement for users, formulate the problem into
mathematical models to minimize the average time delay of control paths, the load imbalance
degree of controllers and embedding cost. We propose a heuristic method which places
controllers and partitions control domains according to substrate SDN network, embeds
different QoS constraint vSDN requests by corresponding algorithms, and migrates switches
between control domains to realize load balance of controllers. The simulation results show
that the proposed method can satisfy different QoS requirement of tenants, keep load balance
between controllers, and work well in the acceptance ratio and revenue to cost ratio for vSDN
embedding.

Keywords: Virtual SDN Embedding, Controller Placement, QoS, Controller Adjustment

This work was jointly supported by the National Natural Science Foundation of China (No. 61201209, 61401499)

http://doi.org/10.3837/tiis.2018.09.003 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4145

1. Introduction

Network virtualization has been regarded as a fundamental technology for the next
generation Internet [1, 2]. By the mechanism of resource abstraction and isolation， network
virtualization allows multiple virtual networks (VNs) to operate on the shared substrate
network (SN) simultaneously. Software-defined networking has emerged as a promising
technology for network programmability and experiments. It decouples the control plane and
the data plane, and guides forwarding devices by a logically centralized controller [3]. The
virtualization of SDN network is the combination of these two technologies and has gained
considerable attention from both industry and academia in recent years. It provides convenient
means for testing new algorithms, protocols and network architectures, helps shorten the
cycles of network configuration.

The SDN virtualization platform based on transparent proxy is the central method to
realize the virtualization of SDN network. FlowVisor [4], ADVisor [5], CoVisor [6] are
representations. In this mode, transparent proxy sits between the control plane and data plane,
and acts as the network virtualization layer. Transparent proxy slices the substrate SDN
network along multiple dimensions: topology, bandwidth, switch CPU, and flow tables. Each
slice has its own view of virtual topology and the associated controller. Controller defines and
manages the routing policy and resources of slice. We consider a slice along with its associated
controller as a virtual SDN network (vSDN).

The main work of SDN virtualization platform are slicing and embedding. Slicing
identifies and isolates each vSDN from others to allow multiple vSDNs running their own
applications distinctively. Embedding is to embed nodes and links of vSDN to the switches
and paths of substrate SDN network on the basis of resources and topology constraints [7].
There is an improtant difference between traditional VN embedding and vSDN embedding,
vSDN embedding should take the problem of controller placement into consideration.

In SDN virtualization environment, controller is usually placed at the same position of
switch. Controller placement is to find the optimal switch location for controller to minimize
the controller-to-switch delay. As a result, the controller can communicate effectively with all
the switches, and react quickly to network events [8].

In single controller SDN architecture, controller manages the embedding and operating
of all vSDNs, time delay is the main challenge to place controller. However, there is reliability
and scalability problem for single controller architecture. To further improve scalability,
reliability and performance of network, it is recommended to deploy multiple controllers in
SDN architecture since OpenFlow (OF) protocol v1.2. In this way, multiple controllers
cooperate to manage the SDN network in a physical distributed but logic-centralized form.
However, the problem of placing multiple controllers is introduced [9, 10]. Time delay is a key
factor to multiple controllers placement; besides, during vSDN embedding, virtual nodes of
vSDNs are embedded to switches randomly due to the position and resource constraints, thus
the resource consumption of switches are significantly different, and leads to load imbalance
among controllers. The overload of controllers has negative effects on network stability. It is
important to adjust controllers’ load dynamically to avoid overload.

In this paper, we focus on designing vSDN embedding techniques in SDN environment.
In contrast to previous work, we consider controller placement, vSDN embedding and
controller load balance together for the first time. Besides, as the different quality of services
(QoS) requirements of tenants, we provide two-level QoS for vSDN requests which require

4146 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

time delay constraint of both controller-to-switch connection and virtual link. The problem is
described as different QoS constraint vSDN embedding under multiple controllers.

To solve the problem, we formulate the controller placement and adjustment problem
into a multi-objective nonlinear integer program (NLIP) to optimize the average time delay of
controller-to-controller, the average time delay of controller-to-switch, and the load imbalance
degree of controllers. We formulate different QoS constraint vSDN embedding problem into
an integer linear program (ILP) to optimize the embedding cost.

Due to the NP-hard nature of the problem, we design a heuristic method. Our method
consists of three aspects: the Controller Placement method based on Immune optimization
Algorithm (IACP), vSDN embedding algorithm, and the Controller adaptive Adjustment
algorithm based on Threshold (TCA). In our method, firstly, controllers are placed and control
domains are partitioned by IACP, according to substrate SDN network and the number of
controllers. Secondly, once vSDN request arrives, it will be embedded by corresponding
algorithm according to its QoS requirement. Thirdly, once controller is overload after
embedding, switches of overload controller will be migrated to other control domain by TCA.
The method coordinates the relationship between controller placement, vSDN embedding and
controller adjustment. Simulation result shows that our method satisfies different QoS
requirement of tenants, works well in the acceptance ratio and revenue to cost ratio for vSDN
embedding, and realizes controller load balance.

In summary, the main contributions of this paper can be summarized as follows: (1) To
the best of our knowledge, we make the first attempt to study the vSDN embedding problem
under multiple controllers. (2) We formulate the controller placement and adjustment problem
into a NLIP formulation, formulate different QoS constraint vSDN embedding problem into
an ILP separately, and design a heuristic method to solve the problem. (3) We evaluate the
performance in terms of acceptance ratio, revenue to cost ratio of vSDN embedding, load
imbalance degree of controllers. Simulation results demonstrate the effectiveness of the
proposed method, and we analyze the effects of each aspect of method on the performance.

The rest of paper is organized as: we discuss the related works in section 2. Section 3
gives the architectures of OpenFlow based multiple controllers SDN network, SDN
virtualization, and the vSDN embedding model. Section 4 describes the NLIP and ILP
formulations. Section 5 presents our method. Section 6 describes simulation results and
analysis. The paper is concluded in section 7.

2. Related Work
There are three kinds of existing work related to our work: the controller placement, controller
load balance in multiple control domains and VN embedding.

The controller placement problem is a pre-planning problem of SDN, it was first
proposed in [8], where authors solved how many and where to place controllers. They solve
the problem by minimizing average latency and maximum latency from switches to
controllers. Yao et al. in [9] consider both propagation delay and transmission delay, formulate
the controller placement as an optimization problem. They present two algorithms based on
greedy and Dijkstra algorithms to solve the problem. Hu et al. in [10] present a metric to
characterize the reliability of SDN control network, and develop several heuristic placement
algorithms. However, the methods mentioned above are all static placement without
considering the change of network traffic, which lead to load imbalance among controllers.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4147

Dynamic switch migration scheme can help load balance for controllers and optimize
network management. Bariin et al. in [11] formulate the optimal controller provision problem
as an integer linear problem and propose two heuristic algorithms. Dixit et al. in [12] propose a
detailed migration mechanism to assign switches to controller dynamically. Yao et al. in [13]
define a controller placement metric considering the switch degree and the delay from
switches to controller, propose a dynamic switch migration algorithm to adapt to the flow
dynamics, and realize controller load balance in multiple SDN domains. These works are
designed for SDN architecture but not for SDN virtualization architecture, in which vSDN
embedding and its effects on controller’s load should be taken into consideration, and novel
adjustment method need to be developed for realizing load balance of controllers.

There are many previous works focus on VN embedding problem in traditional network,
and many VN embedding algorithms are proposed with different objectives or constraints
[14-18]. Cui et al. in [16] introduce the node connection-degree based on virtual topology
connection feature, it helps increase the utilization efficiency of substrate network. Ding et al.
in [17] introduce betweenness centrality to sort virtual nodes, introduce correlation properties
between substrate nodes to coordinate the process of node embedding and link embedding.
Liao et al. in [18] consider topology attributes of substrate and virtual networks through
multiple characteristics to better coordinate node and link embedding. As the distinctions of
SDN environment, these method cannot be directly applied to the SDN virtualization
environment, and novel embedding method need more efforts.

There are also a few studies focus on VN embedding in SDN network [19-22]. Mijumbi
et al. in [20] consider the load balance of nodes and links together, and propose a flow
migration method based on real-time network state, which dynamically manage the node and
link resources in SDN virtualization environment. Mehmet et al. in [21] tackle virtual node
and link embedding, and controller placement together, develop techniques to perform
embedding with two goals: balancing the load on the substrate network and minimizing
controller-to-switch delays. Gong et al. in [22] propose an online vSDN embedding algorithm,
which embeds the controller and the virtual nodes to the substrate nodes at the same time by
considering both of controller-to-switch delay and link embedding, then virtual links are
embedded by k-shortest path algorithm. However, these method are all based on single
controller architecture.

In multiple controllers SDN architecture, the control plane is distributed, and the
architecture includes two categories: the flat control architecture [23-25], in which all the
controllers are in equal status; the hierarchical control architecture [26], in which the control
plane are layered as root controller and leaf controller. Tootoonchian et al. in [23] design and
realize HyperFlow, which is a distributed and event-based OpenFlow controller. HyperFlow
allows to place multiple controllers in network, offers extendibility and keeps the
centralization of network control logic by sharing the coincident network view between all
controllers. Hassas et al. in [26] propose Kandoo, which is two-layer controller architecture. In
Kandoo, bottom controllers are isolated from each other and have no idea about the network
view, they are all connect to the top controller. The top controller is logically centralized and
maintain the global network view. By this way, bottom controllers handle local events and
screen local messages to the top, which reduces the cost of top controller.

In this study, we combine controller placement, controller adjustment and vSDN
embedding together for embedding vSDN in multiple controllers SDN network.

4148 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

3. System Model

3.1 Problem Description
Fig. 1 shows the multiple controllers SDN network architecture based on OpenFlow, which
consists of forwarding plane and control plane. OF switches in forwarding plane maintain their
own flow table structures, manage and forward packets according to flow tables. Controllers
in control plane compute and assign forwarding flow rules to OF switches via the southbound
interface, i.e., OpenFlow. Moreover, the controllers are responsible for network management,
including the resource scheduling of forwarding plane, network topology maintenance and
real-time update of network status.

Fig. 1. OpenFlow based multiple controllers SDN architecture

We take FlowVisor as an example to illustrate the SDN virtualization based on

transparent proxy and vSDN network embedding, as shown in Fig. 2. The proxy FlowVisor
transmits all the control and status messages, it interjects between the forwarding plane and
control plane. vSDNs coexist on the shared substrate SDN network and are isolated from each
other. Each vSDN owns its managing controller and the set of virtual nodes and links. A
virtual node is hosted on a particular OF switch, and a virtual link spans over a path in the
underlying substrate SDN network. In Fig. 2, virtual nodes of vSDN1 are embedded to A, B
and C, virtual links are embedded to AB and BC, the controller- to-switch connection, i.e., the
red dashed lines are pre-assigned in SDN network.

Fig. 2. Architecture of SDN virtualization

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4149

3.2 Network Model
Substrate SDN network We model the multiple controllers substrate SDN network by a
weighted undirected graph (, , ,)S S C S CN N L L=G , where SN , CN , SL , CL represent the sets of
substrate node (OF switch), controller, substrate link and control path respectively, the control
path includes controller-to-switch connection and controller-to-controller connection.

For each substrate node s sn N∈ , we take the available CPU, available ternary
content-addressable memory (TCAM) capacity and position as its attributes, which are
denoted by ()scpu n , ()stcam n and ()sloc n ; TCAM is used for flow table storage and
processing, () (,)s s sloc n x y= is a two-dimensional coordinate. For each controller c Cn N∈ , we
take control domain and load as its attributes and denote them by ()cCA n and ()cAtcam n ,

()cCA n includes the OF switches that are managed by cn ,
()

() ()
s c

c s
n CA n

Atcam n contcam n
∈

= ∑ ,

where ()scontcam n denotes the TCAM consumption of sn . For each substrate link s Sl L∈ , its
attributes are available bandwidth and time delay, which are denoted by ()sbw l and ()sdl l . For
each control path c Cl L∈ , we take time delay as its attribute and denote it by ()cdl l .

Different QoS constraint vSDN request The request is modeled as a weighted
undirected graph (, , ,)vSDN v v v vN L QoS T=G , where vN and vL represent the sets of virtual node
and link.

For each virtual node v vn N∈ , we take the requirement of CPU, TCAM, position and
position constraint as its attributes and denote them by ()vcpu n , ()vtcam n , ()vloc n and ()vD n
respectively. For each virtual link v vl L∈ , we take the requirement of bandwidth as its attribute
and denote it as ()vbw l . vQoS represents the QoS requirement of vG , in our work, we set 2QoS
requirement as to satisfy the time delay constraint of both control path and virtual link. vT
represents survival time of vG .

Different QoS constraint vSDN embedding The embedding is defined as an
embedding action M from vSDNG to a subset of sG , the embedding should meet the resource
and QoS requirement of vSDN request, it is denoted as

 : (, , ,)sub sub
v s s N LM G N L R R→ (1)

where sub
s sN N∈ , sub

s sL L∈ , NR and LR represent resources of switches and links that allocated
to vSDN request.

Different QoS constraint vSDN embedding under multiple controllers The problem
consists of three aspects: controller placement, vSDN embedding, and controller adaptive
adjustment for load balance.

In our work, the controller placement is defined as: given the substrate network and the
number of controllers, where should the controllers go and how to assign OF switches to each
controller for best assignment. The vSDN embedding problem has been described above.
Controllers are immobility in substrate SDN network once they are placed, and OF switches
are assigned to different control domains. During vSDN embedding, the TCAM consumption
of OF switches changes, which leads to the load change of controllers. Controller adaptive
adjustment is defined as: how to adjust the management relationship between controllers and
switches dynamically, to realize load balance of controllers.

4150 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

4. Mathematical Model

4.1 Objectives
The main goal of different QoS constraint vSDN embedding is to make full use of substrate
network resources, accept more vSDN requests while satisfy their QoS requests, increase
revenue and reduce cost. The optimization objectives include:

Average time delay of control path
The time delay of controller-to-switch connection affects the response speed of controller

to events of substrate SDN network. The time delay of controller-to-controller connection
affects the information synchronization between controllers. The average time delay of control
path is defined as

1 1() () ()
c C cs CS cc CC

mean c cs cc
l L l L l LC C

T dl l dl l dl l
L L∈ ∈ ∈

 
= = +  

 
∑ ∑ ∑ (2)

where CL is the number of control path, CSL and CCL represent the control path set of
controller-to-switch and controller-to-controller respectively, C CS CCL L L=  , csl and ccl
represent two kinds control path respectively.

The acceptance ratio
The acceptance ratio is defined as

0

0

()

()
lim

T

map
t

T
T

t

vSDNR t

vSDNR t

=

→∞

=

∑

∑
 (3)

where ()vSDNR t is the number of vSDN requests that arrive at time t, ()mapvSDNR t is the
number of vSDN requests that have been successfully embedded at time t.

The revenue to cost ratio (R/C)
Revenue of vSDNG at time t is defined as

() 1 1, () () ()
v v v v v v

vSDN v v v
n N n N l L

R G t cpu n tcam n bw lγ α β
∈ ∈ ∈

 
= ⋅ + +  

 
∑ ∑ ∑ (4)

where γ is the revenue weight of different QoS constraint vSDNG . In our work, we set 1.2γ =
for 2QoS and 1γ = for 1QoS . 1α and 1β are weighting coefficient to balance the relative
revenues from TCAM, bandwidth and CPU, we set 1 1α = , 1 1β = .

Cost of vSDNG at time t is defined as

() 2 2, () () () () ()
v v v V s L v vv

vSDN v v s v v
n N n N n P l L

Cost G t cpu n tcam n tcam n hops l bw lα β
∈ ∈ ∈ ∈

 
= + + + ⋅  

 
∑ ∑ ∑ ∑ (5)

where
vLP denotes the total substrate paths of vSDNG . ()

s Lv

s
n P

tcam n
∈
∑ is the TCAM consumption

of substrate nodes that paths span. ()vhops l is the total hop counts of path that vl embed to.
2α and 2β are weighting coefficient to balance the relative costs from TCAM, bandwidth and

CPU, we set 2 1α = , 2 1β = .
So the R/C is defined as

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4151

()

()

0 ()

0 ()

,
/

,
lim vSDN map

vSDN map

T

vSDN
t G vSDN t

T
T

vSDN
t G vSDN t

R G t
R C

Cost G t

= ∈

→∞

= ∈

=
∑ ∑

∑ ∑
 (6)

The load imbalance degree of controllers
We define the load imbalance degree of controllers as the variance of each controller’s

load relative to the average load, as illustrated in Eq. 7.
1
2

2(() ())
C

c

N

c c
n

C

Atcam n Atcam n
D

N

 
− 

 =  
  
 

∑
 (7)

where ()cAtcam n is the average load of controllers.

4.2 Mathematical Model
In this section, we formulate the controller placement and adjustment problem into a
multi-objective Nonlinear Integer Program as follows.

Objectives:
min meanT (8)
min D (9)

Multiple controller placement constraints:

S

j C
j N

y N
∈

=∑ (10)

1; 0,
C

ij i S
j N

x i y i N
∈

= ∀ = ∈∑ (11)

,

1
2

c

C
ij C

i j V

N
x N

∈

−
=∑ (12)

()cs csdl l t≤ ， cs CSl L∀ ∈ (13)
()cc ccdl l t≤ ， cc CCl L∀ ∈ (14)
{ }, 0,1 ; ,i ij S Sy x i N j N∈ ∀ ∈ ∈ (15)

The objectives of the NLIP try to minimize the average time delay of control path, and
minimize the load imbalance degree of controllers, as is shown in Eqs. 8 and 9. Constraint
(10) denotes that there are CN nodes in SN are selected to place controllers. Constraint (11)
denotes that for one node there is only one controller-to-switch connection access to control
plane; constraint (12) denotes the number of controller-to-controller connections.
Constraints (13) and (14) are time delay constraint of two type control paths. In constraint
(15), 1iy = denotes a controller is placed in the position of node i , otherwise 0iy = ; 1ijx =
denotes 1iy = and node i is assigned to controller j , or 1i jy y= = and controller i is
connect to controller j , otherwise 0ijx = .

We formulate the problem of different QoS constraint vSDN embedding into an Integer
Linear Program as follows.

4152 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

Objective:
()min vSDNCost G (16)

Node embedding constraints:
,i v j Sn N n N∀ ∈ ∀ ∈ :

() ()i
j i jx cpu n cpu n⋅ ≤ (17)

() ()i
j i jx tcam n tcam n⋅ ≤ (18)

((), ()) ()i
j i j ix dis loc n loc n D n⋅ ≤ (19)

1
j S

i
j

n N
x

∈

=∑ ， 1
i v

i
j

n N
x

∈

≤∑ (20)

Link embedding constraints:
ij Sl L∀ ∈ ：

() ()
uw V

uw
ij uw ij

l L
f bw l bw l

∈

⋅ ≤∑ (21)

,j S uw Vn N l L∀ ∈ ∈ ：

1, 1
1, 1

0,ji S ij S

u
j

uw uw w
ji ij j

l L l L

x
f f x

∈ ∈

 =
− = − =



∑ ∑
otherw ise

 (22)

QoS constraint:

2QoS ：
1()vc csdl l t≤ ， vc vSDNl G∀ ∈ (23)

()v pdl l t≤ ， v vl L∀ ∈ (24)
Variable domain constraint:

,i v j Sn N n N∀ ∈ ∀ ∈ ： { }0,1i
jx ∈ (25)

,j S uw Vn N l L∀ ∈ ∈ ： { }0,1uw
jif ∈ (26)

The objective of the LIP tries to minimize the cost of vSDN embedding, as is shown in
Eq. 16. Constraints (17), (18) and (19) denote the constraints of CPU, TCAM and position
respectively. Constraint (20) ensures that each virtual node in vSDN request must be
embedded to just one substrate nodes. Constraint (21) is the bandwidth constraints.
Constraint (22) is the connectivity constraint. Constraints (23) and (24) are time delay of
control path and virtual link for 2QoS request, as for 1QoS request, there is no time delay
constraint. Constraints (25) and (26) denote the binary domain for the variables i

jx and uw
jif .

5 Heuristic Method Design
The NLIP model and the ILP model are both NP-hard problem, thus, different QoS constraint
vSDN embedding under multiple controllers is NP-hard, too. In this section, a heuristic
method is proposed to solve the problem.

Firstly, by using the Controller Placement method based on Immune optimization
Algorithm, controllers are placed and control domains are partitioned according to substrate
SDN network and the number of controllers. Secondly, when vSDN requests arrive, each
vSDN request is embedded by corresponding algorithm according to its QoS requirement.
Thirdly, once vSDN is successfully embedded and substrate network resources are consumed,
whether the load of controllers exceed threshold or not will be judged. If there is controller be

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4153

overload, OF switches from overload control domain will migrate to lightly load control
domain. Which switches to select and where to go are calculated by Controller adaptive
Adjustment algorithm based on Threshold.

5.1 Controller Placement Method Based on Immune Optimization Algorithm
Immune optimization algorithm is introduced into the IACP method to resolve controller
placement problem. Immune optimization algorithm applies whole search strategy and
emphasizes information exchange between the colony. The operation of IACP cycles the
process of initial antibody population generating, evaluation criterion calculation, individual
information exchange among population, and new antibody population generating. Then an
optimal solution can be obtained after cycling.

Fig. 3 illustrates the process of IACP, and the specific steps are as follows.
1) Network information initialization, including the substrate SDN network information

and the set of controllers.
2) Initial antibody population generating. The feasible solution of controller placement

problem is expressed as an antibody through encoding, and the initial antibody population are
generated randomly in solution space.

In our work, the antibody population is represented by An , and its number is An . iX
represents antibody, indicating a scheme of controller placement. The length of iX is CN ,
which is the number of controllers. We set iX as

1 2[, , ...]
Ci i i i N= x x xX ， { }1,2,...,ij Sx N∈ (27)

where ijx is the serial number of a switch. ijx represents controller jn is placed at the position
of the switch in . For iX , the set of control paths is denoted by

i i iX C X CC X CSL L L=  . For

icc X CCl L∀ ∈ , ccl denotes the controller-to-controller connection, and it is the shortest time
delay path between controllers in iX . For

ics X CSl L∀ ∈ , arg min (,)
c C

cs s cn N
l dl n n

∈
= , in which csl

denotes the controller-to-switch connection of sn . If the shortest time delay path from sn to
controller cn is shortest in all the paths from sn to all controllers, then csl is the shortest time
delay path from sn to controller cn , and sn is belonged to the control domain of cn , i.e.

()s cn CA n∈ .
For

icc X CCl L∀ ∈ ，
ics X CSl L∀ ∈ , whether the antibody satisfies Eqs. 13 and 14 is judged,

new antibody will be generated if the constraints are not satisfied for iX .
3) Calculating the fitness value

iXA , the antibody affinity ,i jX XS and the concentration

iXC of iX , according to Eqs. (28, 29, 30).

1
()i

c X Ci

C
X

mean c
l L

L
A

T dl l
∈

= =
∑

 (28)

,
,

i j

i j

X X
X X

C

k
S

N
= (29)

,
1

i i j
j

X X X
X An

C S
An ∈

= ∑ ，
,

,

1,

0,
i j

i j

X X
X X

S
S

otherwise

ω>= 


 (30)

where ,i jX Xk denotes the number of the same elements in iX and jX , ω is threshold.

4154 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

4) Calculating the reproduction probability constant of antibody, we denote it as ()iP X .

() (1)i i

i i

X X
i

X X

A C
P X

A C
ε ε= + −
∑ ∑

 (31)

where ε is a constant.
5) The crossover, selection and mutation operation of antibody, and new antibody

population is produced, then return to step 2) to circle.
Network information initialization

Antibody initialization

Calculate fitness and concentration

Satisfy finish
condition

Antibody generate
(crossover, selection and mutation)

Elitist selection

Result output

Y

N

Calculate reproduction probability

Fig. 3. Process of IACP

5.2 Different QoS Constraint vSDN Embedding Algorithm
In our work, for 2QoS , we design two algorithms: the vSDN embedding algorithm for cost
optimization (CO-vSDNE) and vSDN embedding algorithm for time delay optimization
(DO-vSDNE). For 1QoS , we design the vSDN embedding algorithm for minimum cost
(MC-vSDNE).

Three algorithms are all two-step embedding algorithm that embeds virtual nodes first,
and then embeds virtual links to paths in substrate SDN network. The difference is that:
CO-vSDNE sastifies time delay constraint for 2QoS , and focuses on minimizing embedding
cost. DO-vSDNE sastifies time delay constraint for 2QoS , and focuses on minimizing time
delay of virtual links. MC-vSDNE doesn’t consider time delay constraint, and focuses on
minimizing embedding cost. The difference of the three algorithms in embedding process
including: candidate substrate nodes selecing in node embedding process, and shortest path
calculating in link embedding process.

1) Node embedding
In node embedding stage, the virtual nodes are sorted first, then for each virtual node to

be embedded, its candicate substrate nodes are sorted and selected.
To sort virtual nodes, we define function R to calculate resource requirement of virtual

nodes.
() () ()

()
() () *

v v

v v v v
l L n

R n cpu n tcam n bw l
∈

= + ∑ (32)

where ()vL n denotes the set of adjacent links of vn .
The virtual nodes sorting process is as follows: firstly, calculating R of all virtual nodes,

virtual node with maximum R is selected as the root node to run Breadth First Search (BFS)
algorithm. Secondly, the rest virtual nodes are divided into sets 1

vnΩ , 2

vnΩ ,…,
v

n
nΩ , where

v

i
nΩ

represent the set in which nodes are i hop counts from root node. Thirdly, sorting nodes in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4155

descending order in each set according to R , and then the last embedding sequence of virtual
nodes is build.

For each virtual node to be embedded, its candidate substrate nodes are sorted by
considering their resources and connectivity, as Eq. 33.

() ()
()

s
s

s

R n
NF n

Dis n µ
=

+
 (33)

where ()sR n is calculated by Eq. 31, µ is a small positive number to prevent the
dividend being zero, ()sDis n is the distance parameter of sn . Virtual node will be embedded to
the substrate node with max NF.

For CO-vSDNE, the process of calculating ()sDis n is as follows: firstly, for virtual node
vin that to be embedded in turn, substrate node which satisfies constraints (13, 17, 18, 19) is

selected to its candicate substrate node set, and the set is denoted as ()viCan n . Secondly,
another set is generated with substrate nodes which are embedded by the virtual nodes directly
connected to vin , and the set is denoted as () { , (,) 1}vi s v s v viEmbed n n n n hops n n= ↑ = , where

v sn n↑ denote that vn is embedded to sn , (,) 1v vihops n n = denote that vin is directly connected
to vn in vSDN request. Thirdly, the connectivity parameter of each candidate substrate node is
defined as

()
() (,)

k vi

s s k
n Embed n

Dis n hops n n
∈

= ∑ , ()s vin Can n∈ (34)

For DO-vSDNE, its connectivity parameter is calculated according to time delay, as Eq.
35.

()
() ()

k vi

s sk
n Embed n

Dis n dl l
∈

= ∑ , ()s vin Can n∈ (35)

For MC-vSDNE, substrate nodes that satisfy constraints (17, 18, 19) are selected as
candicate substrate node set of vin , i.e. the time delay is not considered, and other parts of node
embedding process are same with CO-vSDNE.

The details of node embedding algorithm is shown in Algorithm 1.

Algorithm 1 Node Embedding Algorithm
Input: Substrate network sG ,Virtual network request vSDNG
Output: Node embedding NM
1. for each virtual node v vn N∈
2. Calculate ()vR n
3. end for
4. Take vn with max R as root node, run BFS, divide the remaining nodes into sets

1

vnΩ , 2

vnΩ ,…,
v

n
nΩ

5. Sort nodes in
v

i
nΩ in descending order according to their ()vR n

6. Record the virtual nodes embedding sequence into VirtualNodeList
7. for each vn in VirtualNodeList do
8. Generate candidate node set ()viCan n
9. if ()viCan n is empty
10. Return NODE_EMBEDDING_FAILED
11. else Generate the embedded substrate node set ()viEmbed n

4156 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

12. for each sn in ()viCan n
13. Calculate ()sNF n
14. end for
15. Embed vn to sn with max NF, namely ()N

v sM n n=
16. end if
17. end for
18. return NODE_EMBEDDING_SUCCESS

2) Link embedding
In link embedding stage, we adopt shortest path algorithm to embed virtual links to

substrate paths, as shown in Algorithm 2. The difference is that: CO-vSDNM takes hop least
path which sastifies the time delay constraint as the result of link embedding. TO-vSDNM
takes time least path which sastifies the time delay constraint as the result of link embedding.
MC-vSDNM takes the hop least path without considering time delay as the result of link
embedding.

Algorithm 2 Link Embedding Algorithm

Input: Substrate network sG ,Virtual network request vG ,Node embedding NM
Output: Link Embedding LM
1. for each virtual link uv vl L∈ to be embedded do
2. Search the shortest path between node u and v in substrate, record it as uvP
3. if request is 2QoS & ()uv ssdl P t> then
4. return LINK_MAPPING_FAILED
5. else Embed uvl to uvP , namely ()L

uvM l p=
6. end if
7. end for
8. return LINK_EMBEDDING_SUCCESS

5.3 Controller Adaptive Adjustment Algorithm Based on Threshold
We design the TCA algorithm to migrate switches from overload controller domain to lightly
load controller domain. The process is as follows.

1) Beginning time of adjustment: once a vSDN request is successfully embedded, if there
is c cn N∈ whose ()cAtcam n η> , the first adjustment circle starts, η is a pre-set threshold.

2) The control domain to move out: ()() arg max ()
c C

c cn N
CA n Atcam n

∈
= , i.e. , control domain

with heaviest load, then its switches will be moved out.
3) Number of switches to be moved out: the heaviest and lightest load controllers are

denoted by ,maxcn and ,mincn respectively, then ,max ,min[() ()] / 2TCAM c cAtcam n Atcam n∆ = − is
calculated. We migrate switches of ,maxcn until the TCAM consumption of all migration
switches is more than TCAM∆ .

4) The control domain to move in, the migration switches and the constraint for switch
moving: switches from the heaviest load control domain ,max()cCA n are moved to the lightest
load control domain ,min()cCA n . Firstly, Switches in ,max()cCA n are sorting according to their

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4157

time delay to ,mincn , switch that meets ,min(,)s c csdl n n t≤ is moved to ,min()cCA n in turn until the
TCAM consumption of migration switches is more than TCAM∆ .

Secondly, if there is no more switch in ,max()cCA n meets ,min(,)s c csdl n n t≤ and the TCAM
consumption of all migration switches is still less than TCAM∆ , the second lightest load
controller ,min 2cn is selected to move switches in. Residual switches in ,max()cCA n are sorting
according to their time delay to ,min 2cn , and circle the migration process until the condition of
step 3) is satisfied.

5) The time to end: once the first adjustment circle is finish, if there is c cn N∈ , whose
()cAtcam n η> , then start the second adjustment circle. If the total counts of adjustment circle

is more than / 2CN , then the adjustment process is finished. By this way, the condition of
repeatedly adjustment is avoided.

We design the controller adaptive adjustment algorithm by considering: firstly,the
adjustment is triggered by threshold rather than periodic, which is more flexible and timely.
Secondly, controller whose load exceeds threshold will migrate rather than execute load
balance in all controllers, which help reduce the number of migration switches, and maintain
network stability. Thirdly, migration switches are selected according to their time delay to
target controller rather than their load, the position of selected switches are near to the
boundary of control domain, which is conducive to maintain the continuation of control
domain. The details of TCA algorithm are shown in Algorithm 3.

Algorithm 3 TCA Algorithm

Input: Control domain ()cCA n ，Control load ()cAtcam n
Output: Control domain ()n cCA n
1. 1count = ， 1 1k =

2. while c cn N∃ ∈ ， ()cAtcam n η> & / 2Ccount N<
3. Sort all control domains in ascending order according to their ()cAtcam n as ,1()cCA n ,

,2()cCA n , …, ,()c kCA n , calculat TCAM∆
4. while 1 TCAM∆ < ∆ & 1 1ck N< −
5. Sort switches in ,()c kCA n according to their time delay to ,1cn
6. Migrate ,()s c kn CA n∈ that sastify , 1(,)s c k csdl n n t≤ to 1()kCA n in turn ， calculate

1 ()scontcam n∆ =∑
7. 1 1 1k k= +
8. end while
9. 1count count= +
10. end while

6. Performance Evaluation and Analysis

6.1 Simulation Environment
A simulator using Matlab to evaluate the performance of our method was developed. Substrate
SDN network is composed by 100 nodes and about 500 links. The positions of nodes follow a

4158 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

uniform distribution in the scope of 1000 1000L L× = × . The initial CPU, TCAM of substrate
nodes and bandwidth of substrate links are real numbers following a uniform distribution
between 50 and 100. Time delay of substrate links is calculated by () 3 () / 2s sdl l d l c= , where

()sd l denotes the length of sl , we set 3 5c e= . Number of controllers is 5, the threshold to
trigger controller adjustment is set as 500η = .

The number of virtual nodes in each vSDN request is uniformly distributed between 5
and 15. Positions of nodes follow a uniform distribution in the scope of 1000 1000L L× = × and
all position constraints are set as 300. The required CPU and bandwidth are real numbers
uniformly distributed between 10 and 30. We set the required TCAM of each virtual node as

() 1v vtcam n N= − , the TCAM consumption of substrate nodes that virtual links span is set as
() 2stcam n = . The vSDN requests arrive by the Possion distribution with the rate of 10 per 100

time units, and the lifetime follows an exponentially distribution with the mean of 200 time
units. Simulations were run 3000 time units to reach a stable state, which contain about 300
vSDN requests, of which 2QoS requests account for 1/3, i.e, there is about 100 2QoS requests.

The parameters that we use in our simulations are summarized in Table 1.
Table 1. Parameters in simulations

 Parameters Values

SG

Number of substrate nodes 100

Positions of substrate nodes
a uniform distribution in the scope of

1000 1000L L× = ×
Number of substrate links about 500

CPU and TCAM of substrate node
bandwidth of substrate link

A uniform distribution from 50 to 100

Time delay of substrate link () 3 () / 2s sdl l d l c=

CN Number of controllers 5

vSDNG

Number of virtual nodes A uniform distribution from 5 to 15

Positions of virtual nodes
a uniform distribution in the scope of

1000 1000L L× = ×
Position constraints of virtual

nodes
() 300viD n =

CPU of virtual node
bandwidth of virtual link

A uniform distribution from10 to 30

TCAM of virtual node
() 1v vtcam n N= − for virtual node

() 2stcam n = for substrate nodes that virtual links span
vSDN
events

Arrival rate of VN requests 10 per 100 time units
Lifetime of VN request 200 time units exponentially distribution

η threshold to trigger 500

Based on the parameters setting above, the time delay of substrate links is distributed in

the scope of [1.9049e-4, 1.2e-3], the time delay of shortest path between each substrate node

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4159

pairs is distributed in the scope of [1.9049e-4, 6.5e-3]. In our work, we set time delay
constraint of controller-to-controller and controller-to-switch as 0.002cct = and 0.003cst =
respectively. For 2QoS , the time delay constraints for controller-to-switch and virtual link are
set as 1 0.0015cst = and 0.004pt = respectively. The parameters setting of the four time delay
constraint is based on that, the ratios of shortest path time delay between each substrate node
pairs which sastify () 0.002sdl P < , () 0.003sdl P < , () 0.0015sdl P < and () 0.004sdl P < are about
32%, 54%, 22% and 80% seperately. Based on that, we evaluate our method for embedding
different QoS constraint vSDN under multiple controllers.

To avoid the disturbance of random factors to the experimental results, each simulation is
carried out for 10 times, and the average value was recorded as the final results.

Fig. 4 illustrates the flow chart of simulation. Modules of controller placement, vSDN
embedding and controller adjustment are designed in Section 5. Simulation inputs including:
Substrate SDN network, set of controllers, vSDN sequence (the set of vSDN requests), vSDN
events which record the arrive time, survival time and end time of all vSDN requests. At
beginning, controllers are placed and control domains are partitioned according to SG and CN ,
then simulation starts.

,sGinput CN

Controller placement

1QoS

vSDN embedding
algorithm 1

Success

Y
vSDN embedding

algorithm 2

N

Y

Substrate network
resources consumption

N

N

Y

0()cAtcam n ω>N

Controller adaptive adjust
Y

End

vSDNG end Substrate network
resources release

Y

N

vSDN embedding
with different
QoS request

Controller adaptive
adjustment with
threshold trigger

Controller placement
based on immune

optimization algorithm

vSDN sequence,
vSDN events

Time start

vSDNG arrive
Y

Time end

t=t+1

Fig. 4. Flow chart of simulation

We set average time delay of control path, load balance and embedding cost as the

optimal objects. As there are no existing algorithms that tackle the problem, we compare our

4160 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

method with its three variations to evaluate performance. The method is consist of three
aspects, we set BM1 as the baseline method which places controllers by IACP, embeds 2QoS
request by CO-vSDNM, embeds 1QoS request by MC-vSDNM, and adjusts controllers by
TCA. BM2 embeds 2QoS request by CO-vSDNM, other steps are the same with BM1. We set
comparison method CM1 which embeds all vSDN requests by TF-SVNM [16] without
considering the time delay constraint; CM2 places controllers by a random way which is set to
evaluate the effect of controller placement on embedding. The comparison of the four methods
is listed in Table 2.

Table 2. Methods comparison

Methods
Description

Controller
placement

2QoS request
embedding

1QoS request
embedding

Controller
adjustment

BM1 IACP CO-vSDNE MC-vSDNE TCA
BM2 IACP DO-vSDNE MC-vSDNE TCA
CM1 IACP TF-vSDNE TF-vSDNE TCA
CM2 Random placement CO-vSDNE MC-vSDNE TCA

6.2 Simulation Results

1） Acceptance ratio and R/C of vSDN requests
Fig. 5 (a) illustrates the acceptance ratios of four methods. The acceptance ratio of BM1

(about 80%) is better than others, follow is CM2 (about 76%), then are BM2 (about 74%) and
CM1 (about 72%). The reason for the better performance of BM1 than CM2 is that the
controllers are placed more reasonable, and it is easier to meet the time delay constraint by
BM1. Performance of BM1 is better than BM2, which shows that the strategy of cost
optimization is better than time delay optimization for 2QoS request embedding.

Fig. 5 (b) illustrates the R/C of four methods. The R/C of BM1 (about 0.53) is best, the
follow is CM2 (about 0.51), then are BM2 (about 0.49) and CM1 (about 0.42). The better
performance of BM1 is due to BM1 embeds two kinds vSDN requests all by cost optimization
embedding algorithms, which reduce the cost. The comparison result shows that BM1 has the
best combination of strategies in controller placement, vSDN embedding and controller
adjustment. BM1 has better performance than others in acceptance ratio and R/C.

0 1000 2000 3000

0.7

0.8

0.9

1

Time

Ac
ce

pt
an

ce
 ra

tio

BM1
BM2
CM1
CM2

0 1000 2000 3000

0.4

0.5

0.6

0.7

0.8

Time

R
/C

BM1
BM2
CM1
CM2

(a) Acceptance ratio (b) R/C

Fig. 5. Comparison between four method

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4161

2) Success number of different QoS constraint vSDN requests

Table 3 shows the success number of different QoS constraint vSDN requests. In one
experiment, the numbers of vSDN requests with 2QoS and 1QoS are 92 and 211 seperately.
Obviously, BM1 embeds the most 2QoS requests, its number is 56. This is because the
restriction to embed 2QoS request is more strict. BM1 embedding 2QoS requests with less
cost while satisfies time delay constraint, which is conducive for the embedding of later 2QoS
requests. CM1 embeds all vSDN requests with minimum time delay of virtual links, which
leads to the heavy load of key substrate links, and makes more difficult for later 2QoS requests
embedding. On the other hand, the results of 1QoS request embedding of the four methods are
similar. This is because 1QoS request has no time delay constraint, the embedding is
influenced only by the resource richness of substrate network.

Table 3. Comparison of success number

 BM1 BM2 CM1 CM2

Total number 244 224 218 232
2QoS requests number 56 36 27 43

1QoS requests number 188 188 191 189

By comparing the performance in Fig. 5 and Table 3, simulation results show that our

method do well in the problem of different QoS constraint vSDN network embedding under
multiple controllers. The performance comparison of BM1 and CM2 shows that controller
placement affects the performance of vSDN embedding. Better placement helps sastify the
time delay constraint. The performance comparison of BM1 and CM1 shows that links with
short time delay in substrate SDN network are important for high QoS constraint vSDN
request. The strategy of cost optimization reduces the occupancy of key substrate link while
satisfies the time delay constraint, which helps the embedding for high QoS constraint vSDN
requests.

3) Load imbalance degree of controllers

Fig. 6 shows the effect of TCA on controllers’ load. Figs. 6 (a) and (b) illustrate the time
average of controller load before and after adjustment. Fig. 6 (c) illustrates the load imbalance
degree of controllers at each time before and after adjustment. Fig. 6 (a) shows that loads of
controllers are great inequality before adjustment. This is because controllers manage different
switches, virtual nodes of vSDN requests are embedded to different switches and consume
different amount of TCAM, all these lead to load imbalance of controllers. Then Fig. 6 (b)
shows that the time average of load of the five controllers is very close. TCA improves load
balance between controllers after adjustment. Fig. 6 (c) also shows that the load imbalance
degree of controllers is apparently decreased after adjustment. Simulation results show that the
TCA algorithm can improve the load balance of controllers and avoid overload.

4162 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

0 1000 2000 3000
0

200

400

600

Time

Ti
m

e
av

er
ag

e
of

 lo
ad

c1
c2
c3
c4
c5

0 1000 2000 3000

0

100

200

300

400

Time

Ti
m

e
av

er
ag

e
of

 lo
ad

c1
c2
c3
c4
c5

(a) Time average of load before adjustment (b) Time average of load after adjustment

0 1000 2000 3000
0

50

100

150

200

Time

C
on

tro
lle

r l
oa

d
im

ba
la

nc
e

After adjust
Before adjust

(c) Comparison of controller load imbalance

Fig. 6. Effect of controller adjustment on load balance

7. Conclusion
In this paper, we study the problem of different QoS constraint vSDN embedding under

multiple controllers. We establish the mathematical models both of the controller placement
and adjustment problem, and the vSDN embedding problem. We propose a controller
placement method based on immune optimization algorithm, design the node embedding
algorithm and link embedding algorithm for different QoS constraint vSDN embedding,
design the controller adaptive adjustment algorithm based on threhold to improve load balance
of controllers. We analyze the performance of the method through simulation. Simulation
results show that our method optimizes the placement of controllers, improves load balance,
and satisfies user’s requirement for different QoS constraint vSDN service. The proposed
method achieves good performance in terms of acceptance ratio and R/C for vSDN
embedding.

However, there are also some problems appeared in our work. Firstly, the way we abstract
and apply the TCAM resource is simple, which need more efforts to insight to the mechanism
of SDN. Secondly, we place the controllers to optimize the time delay of control paths
according to the information of controller number and substrate SDN network. There are many
more application scenes to explore other controller placement methods. Thirdly, we define
function R to calculate resource requirement of virtual nodes and resource richness of
substrate nodes, the function is too simple to describe the relationship between resources of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4163

CPU, TCAM, and bandwidth. It needs more efforts to explore how to make the best of all
kinds of resources. In the future work, we will extend our work to solve the problem
mentioned above. Besides, we plan to consider the vSDN reconfiguration in our algorithm to
further improve the embedding performance.

References

[1] A. Wang, M. Iyen, R. Dutta, et al. “Network virtualization: technologies, perspectives, and
frontiers,” Journal of Lightwave Technology, vol.31, no.4, pp.523-537, August, 2012.
Article (CrossRef Link)

[2] T. Anderson, L. Peterson, S. Shenker, et al. “Overcoming the Internet impasse through
virtualization,” Computer, vol.38, no.4, pp. 34-41, May, 2005. Article (CrossRef Link)

[3] C. Zhang, Y. Cui, H. Tang, et al. “State-of-the-Art Survey on Software-Defined Networking
(SDN),” Journal of Software, vol.26, no.1, pp. 62-81, May, 2015. Article (CrossRef Link)

[4] X. Yin, S. Huang, S. Wang, et al. “Software defined virtualization platform based on
double-FlowVisors in multiple domain networks,” in Proc. of 8th International Conference on
Communications and Networking in China. Beijing, China, pp. 776-780, August 14, 2013.
Article (CrossRef Link)

[5] E. Salvadori, R. Doriguzzi, A. Broglio, et al. “Generalizing virtual network topologies in
OpenFlow-based networks,” in Proc. of 54th Annual IEEE Global Telecommunications
Conference. Houston, USA, pp. 1-6, December 5-9, 2011. Article (CrossRef Link)

[6] X. Jin, J. Rexford, D. Walker. “Incremental update for a compositional SDN hypervisor,” in Proc.
of the Third Workshop on Hot Topics in Software Defined Networking, Chicago, USA, pp. 187-192,
August 22, 2014. Article (CrossRef Link)

[7] J. Liu, T. Huang, C. Zhang, et al. “Research on network virtualization slicing mechanism in
SDN-based testbeds,” Journal on Communications, vol. 37, no. 4, pp. 2016083-1-13, April, 2016.
Article (CrossRef Link)

[8] B. Heeler, R. Sherwood, N. Mckeown, et al. “The controller placement problem,” in Proc. of the
First Workshop on Hot Topics in Software Defined Networks, New York, America, pp.7-12,
August 13, 2012. Article (CrossRef Link)

[9] L. Yao, Y. Chen, F. Song, et al. “Delay-aware Controller Placement for Fast Response in
Software-defined Network,” Journal of Electronics & Information Technology, vol. 36, no. 12, pp.
2802-2808, December, 2014. Article (CrossRef Link)

[10] Y. Hu, W. Wang, X. Gong, et al. “Reliability-aware Controller Placement for Software-Defined
Networks,” in Proc. of 2013 IFIP/IEEE International Symposium on Integrated Network
Management, Ghent, Belgium, pp. 672-675, May 27-31, 2013.Article (CrossRef Link)

[11] M. Bari, A. Roy, S. Chowdhury, et al. “Dynamic Controller Provisioning in Software Defined
Networks,” in Proc. of 9th International Conference on Network and Service Management,
University of Zrich, Switzerland, pp.18-25, October 14-18, 2013. Article (CrossRef Link)

[12] A. Dixit, F. Hao, S. Mukherjee, et al. “Towards an elastic distributed SDN controller,” in Proc. of
ACM SIGCOMM, HongKong, China, pp.7-12, August 12-16, 2013.Article (CrossRef Link)

[13] L. Yao, P. Hong, W. Zhang, et al. “Controller Placement and Flow based Dynamic Management
Problem towards SDN,” in Proc. of 2015 IEEE International Conference on Communication
Workshop, Hefei, China, pp.363-368, June 8, 2015. Article (CrossRef Link)

[14] L. Wang, H. Qu and J. Zhao. “A strategy of controller placement in software defined networks
using binary paticle swarm optimization,” Journal of Xi’an Jiaotong University, vol. 49, no. 6,
pp.67-71, June, 2015.Article (CrossRef Link)

[15] S. Nashid, A. Reaz, R. Shihabur, et al. “Connectivity-aware Virtual Network Embedding,” in Proc.
of 2016 IFIP Networking Conference and Workshops, Vienna, Austria, pp.45-54, May 17-19,
2016. Article (CrossRef Link)

https://doi.org/10.1109/JLT.2012.2213796
http://dx.doi.org/doi:10.1109/MC.2005.136
http://dx.doi.org/10.13328/j.cnki.jos.004701
https://doi.org/10.1109/ChinaCom.2013.6694699
https://doi.org/10.1109/GLOCOM.2011.6134525
https://doi.org/10.1145/2620728.2620731
https://www.researchgate.net/publication/303573061_Research_on_network_virtualization_slicing_mechanism_in_SDN-based_testbeds
https://doi.org/10.1145/2342441.2342444
http://jeit.ie.ac.cn/EN/10.3724/SP.J.1146.2014.00211
http://xueshu.baidu.com/s?wd=paperuri%3A%28113a65720548dde1bcaa347adce70780%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Ficp.jsp%3Farnumber%3D6573050&ie=utf-8&sc_us=15972028502228748866
https://doi.org/10.1109/CNSM.2013.6727805
http://xueshu.baidu.com/s?wd=paperuri%3A%28df56f11db6be29c8bb0c4cf569994c88%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2491193%26amp%3BCFID%3D624821515%26amp%3BCFTOKEN%3D17609251&ie=utf-8&sc_us=
https://doi.org/10.1109/ICCW.2015.7247206
http://www.ir.xjtu.edu.cn/item/301045
https://doi.org/10.1109/IFIPNetworking.2016.7497249

4164 Zhao et al.: Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

[16] H. Cui, W. Gao and J. Liu, “A virtual network embedding algorithm based on virtual topology
connection feature,” in Proc. of 16th International Symposium on Wireless Personal Multimedia
Communications, Atlantic City, USA, pp. 1-5, June 24-27, 2013. Article (CrossRef Link)

[17] J. Ding, T. Huang, J. Liu, Y. Liu, “Virtual network embedding based on real-time topological
attributes,” Frontiers of Information Technology & Electronic Engineering, vol.16, no.2,
pp.109-118, February, 2015. Article (CrossRef Link)

[18] J. Liao, M. Feng, T. Li, J. Wang and S. Qing, “Topology-aware virtual network embedding using
multiple characteristics,” KSII Transactions on Internet and Information Systems, vol. 8, no. 1, pp.
145-164, January, 2014. Article (CrossRef Link)

[19] Z. Wang, J. Wu, Y. Wang, et al. “Survivable virtual network mapping using optimal backup
topology in virtualized SDN,” China Communications, vol. 11, no. 2, pp. 26-37, February, 2014.
Article (CrossRef Link)

[20] R. Mijumbi, J. Serrat, J. Rubio, et al. “Dynamic resource management in SDN-based virtualized
networks,” in Proc. of the 10th International Conference on Network and Service Management,
Rio deJaneiro, Brazil, pp.412-417, November 17-21, 2014. Article (CrossRef Link)

[21] D. Mehmet and A. Mostafa. “Design and analysis of techniques for mapping virtual networks to
software-defined network substrates,” Computer Communications, vol.45, no.1, pp.1-10, June,
2014. Article (CrossRef Link)

[22] S. Gong, J. Chen, S. Zhao, et al. “An Efficient and Coordinated Mapping Algorithm in Virtualized
SDN Networks,” Frontiers of Information Technology & Electronic Engineering, vol. 17, no. 7, pp.
701-716, July, 2016.Article (CrossRef Link)

[23] A. Tootoonchian, Y. Ganjali. “HyperFlow: A distributed control plane for OpenFlow,” in Proc. of
the 2010 internet network management conference on Research on enterprise networking,
USENIX Association, pp. 13-23, 2010.Article (CrossRef Link)

[24] C. Macapuna, C. Rothenberg, et al. “In- packet bloom filter based data center networking with
distributed openflow controllers,” in Proc. of GLOBECOM Workshops, 2010 IEEE, pp. 584-588,
2010. Article (CrossRef Link)

[25] A. Tam, K. Xi, et al. “Use of devolved controllers in data center networks,” in Proc. of Computer
Communications Workshops, pp. 596-601, 2011.Article (CrossRef Link)

[26] Y. Hassas, Y. Ganjali. “Kandoo: a framework for efficient and scalable offloading of control
applications,” in Proc. of the first workshop on Hot topics in software defined networks, pp. 19-24,
2012. Article (CrossRef Link)

http://or.nsfc.gov.cn/handle/00001903-5/414150
http://dx.doi.org/doi:10.1631/FITEE.1400147
http://dx.doi.org/DOI:10.3837/tiis.2014.01.009
https://doi.org/10.1109/CC.2014.6821735
https://doi.org/10.1109/CNSM.2014.7014204
https://doi.org/10.1016/j.comcom.2014.03.008
https://rd.springer.com/article/10.1631%2FFITEE.1500387
http://xueshu.baidu.com/s?wd=paperuri%3A%285cbb5fea174c0bc3076afa6b25e4b219%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1863136&ie=utf-8&sc_us=8452975640680147922
https://doi.org/10.1109/GLOCOMW.2010.5700387
https://doi.org/10.1109/INFCOMW.2011.5928883
http://xueshu.baidu.com/s?wd=paperuri%3A%28025a54737b1119793c01638548f86613%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdx.doi.org%2F10.1145%2F2342441.2342446&ie=utf-8&sc_us=10852387090305176774

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4165

Zhiyuan Zhao is a Ph.D. candidate in Computer Application Technology from Air Force
Engineering University, China. His research interests include virtual network embedding
and software defined networking.

Xiangru Meng is a professor in Communication and Information System from Air Force
Engineering University, China. His research interests include next generation Internet, cloud
computing and software defined networking.

Siyuan Lu is a Ph.D. candidate in Computer Application Technology from Academy of
military sciences, China. His research interests include network virtualiztion and network
survivability.

Yuze Su is a Ph.D. candidate in Computer Application Technology from Air Force
Engineering University, China. His research interests include network virtualiztion and
cloud computing.

