• Title/Summary/Keyword: Social network centrality

Search Result 442, Processing Time 0.029 seconds

Comparing the 2015 with the 2022 Revised Primary Science Curriculum Based on Network Analysis (2015 및 2022 개정 초등학교 과학과 교육과정에 대한 비교 - 네트워크 분석을 중심으로 -)

  • Jho, Hunkoog
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.178-193
    • /
    • 2023
  • The aim of this study was to investigate differences in the achievement standards from the 2015 to the 2022 revised national science curriculum and to present the implications for science teaching under the revised curriculum. Achievement standards relevant to primary science education were therefore extracted from the national curriculum documents; conceptual domains in the two curricula were analyzed for differences; various kinds of centrality were computed; and the Louvain algorithm was used to identify clusters. These methods revealed that, in the revised compared with the preceding curriculum, the total number of nodes and links had increased, while the number of achievement standards had decreased by 10 percent. In the revised curriculum, keywords relevant to procedural skills and behavior received more emphasis and were connected to collaborative learning and digital literacy. Observation, survey, and explanation remained important, but varied in application across the fields of science. Clustering revealed that the number of categories in each field of science remained mostly unchanged in the revised compared with the previous curriculum, but that each category highlighted different skills or behaviors. Based on those findings, some implications for science instruction in the classroom are discussed.

A Study on the Perception of Pit and Fissure Sealant using Unstructured Big Data (비정형 빅데이터를 이용한 치면열구전색(치아홈메우기)에 대한 인식분석)

  • Han-A Cho
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • Background: This study aimed to explore the overall perception of pit and fissure sealants and suggest methods to revitalize their current stagnation. Methods: To determine the social perception of the change in coverage policy for pit and fissure sealants, we categorized them into five time periods. The first period (December 1, 2009 to November 30, 2010), the second period (December 1, 2010 to September 30, 2012), the third period (October 1, 2012 to May 5, 2013), the fourth period (May 6, 2013 to September 30, 2017), and the fifth period (October 1, 2017 to December 31, 2022). We utilized text mining, an unstructured big data analysis method. Keywords were collected and analyzed using Textom, and the frequency analysis of the top 30 keywords, structural features of the semantic network, centrality analysis, QAP correlation analysis, and co-occurrence analysis were conducted. Results: The frequency analysis showed that the top keywords for each time period were 'Cavities', 'Treatment', and 'Children'. In the structural features of the semantic network of pit and fissure sealants by time period, the density index was found to be around 1.00 for all time periods. The QAP correlation analysis showed the highest correlation between the first and second periods and the fourth and fifth periods with a correlation coefficient of 0.834. The co-occurrence analysis showed that 'cavities' and 'prevention were the top two words across all time periods. Conclusion: This study showed that pit and fissure sealants are well accepted by the society as a preventive treatment for caries. However, the awareness of health education related to these sealants was found to be low. Efforts to revitalize stagnant pit and fissure sealants need to be strengthened with effective education.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.

Identifying Landscape Perceptions of Visitors' to the Taean Coast National Park Using Social Media Data - Focused on Kkotji Beach, Sinduri Coastal Sand Dune, and Manlipo Beach - (소셜미디어 데이터를 활용한 태안해안국립공원 방문객의 경관인식 파악 - 꽃지해수욕장·신두리해안사구·만리포해수욕장을 대상으로 -)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.5
    • /
    • pp.10-21
    • /
    • 2018
  • This study used text mining methodology to focus on the perceptions of the landscape embedded in text that users spontaneously uploaded to the "Taean Travel"blogpost. The study area is the Taean Coast National Park. Most of the places that are searched by 'Taean Travel' on the blog were located in the Taean Coast National Park. We conducted a network analysis on the top three places and extracted keywords related to the landscape. Finally, using a centrality and cohesion analysis, we derived landscape perceptions and the major characteristics of those landscapes. As a result of the study, it was possible to identify the main tourist places in Taean, the individual landscape experience, and the landscape perception in specific places. There were three different types of landscape characteristics: atmosphere-related keywords, which appeared in Kkotji Beach, symbolic image-related keywords appeared in Sinduri Coastal Sand Dune, and landscape objects-related appeared in Manlipo Beach. It can be inferred that the characteristics of these three places are perceived differently. Kkotji Beach is recognized as a place to appreciate a view the sunset and is a base for the Taean Coast National Park's trekking course. Sinduri Coastal Sand Dune is recognized as a place with unusual scenery, and is an ecologically valuable space. Finally, Manlipo Beach is adjacent to the Chunlipo Arboretum, which is often visited by tourists, and the beach itself is recognized as a place with an impressive appearance. Social media data is very useful because it can enable analysis of various types of contents that are not from an expert's point of view. In this study, we used social media data to analyze various aspects of how people perceive and enjoy landscapes by integrating various content, such as landscape objects, images, and activities. However, because social media data may be amplified or distorted by users' memories and perceptions, field surveys are needed to verify the results of this study.

The Image of Ruralism in Korea through a Text Mining for Online News Media analysis (인터넷 뉴스 데이터 텍스트 분석을 통해 본 우리나라 농촌다움에 대한 이미지 연구)

  • Son, Yong-hoon;Kim, Young-jin
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.4
    • /
    • pp.13-26
    • /
    • 2019
  • The rural areas in South Korea have changed rapidly in the process of national land development. Rural landscapes have become discoloured, and their attractiveness has decreased as cities have expanded. But the attractiveness or multifunctional values of rural areas has become more important in contemporary society around the world. According to this social demand, the efforts of conserving the rural landscape are of high priority and the recovery of ruralism in the area is required. This study has tried to understand how the public image of ruralism in South Korea has been influenced by the news media. The study retrieved news articles using the web searching portal site from the six keywords, commonly used to refer to ruralism, including 'rural landscape', 'rural community', 'rural tourism', 'rural life', 'rural amenity', and 'rural environment'. News data from the six keywords were also collected respectively from within the year-period of 2004-05, 2007-08, 2012-13, and 2016-17. In the text mining analysis, the nouns with high Degree Centrality were figured out, and the changes by year-period were identified. Then, LDA topic analysis was performed for text datasets of six keywords. As a result, the study found that the news articles gave an informed focus on only a handful of issues such as 'poor rural living condition', 'regional or village improvement projects', 'rural tourism promotion projects', and 'other government support projects'. On the other hand, nouns related to virtues and values in the rural landscape were less shown in news articles. These results have become more apparent in recent years. In the topic analysis, 35 topics were identified. 'village development projects', 'rural tourism', and 'urban-rural exchange projects' were appeared repeatedly in several keywords. Among the topics, there are also topics closely related to ruralism such as 'rural landscape conservation', 'eco-friendly rural areas', 'local amenity resources', 'public interest values of agriculture', and 'rural life and communities'. The study presented an image map showing ruralism in South Korea using a network map between all topics and keywords. At the end of the study, implications for Korean rural area policy and research directions were discussed.

A Study on the Factors Affecting Continuous Use of AI Speaker Using SNA (SNA를 이용한 AI 스피커 지속적 사용에 영향을 미치는 요인 분석 연구: 아마존 에코 리뷰 중심으로)

  • Kim, Young Bum;Cha, Kyung Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.4
    • /
    • pp.95-118
    • /
    • 2021
  • As the AI speaker business has risen significantly in recent years, the potential for numerous uses of AI speakers has gotten a lot of attention. Consumers have created an environment in which they can express and share their experiences with products through various channels, resulting in a large number of reviews that leave consumers with a variety of candid opinions about their experiences, which can be said to be very useful in analyzing consumers' thoughts. Using this review data, this study aimed to examine the factors driving the continued use of AI speakers. Above all, it was determined whether the seven characteristics associated with the intention to adopt AI identified in prior studies appear in consumer reviews. Based on customer review data on Amazon.com, text mining and social network analysis were utilized to examine Amazon eco-products. CONCOR analysis was used to classify words with similar connectivity locations, and Connection centrality analysis was used to classify the factors influencing the continuous use of AI speakers, focusing on the connectivity between words derived by classifying review data into positive and negative reviews. Consumers regarded personality and closeness as the most essential characteristics impacting the continued usage of AI speakers as a result of the favorable review survey. These two parameters had a strong correlation with other variables, and connectedness, in addition to the components established from prior studies, was a significant factor. Furthermore, additional negative review research revealed that recognition failures and compatibility are important problems that deter consumers from utilizing AI speakers. This study will give specific solutions for consumers to continue to utilize Amazon eco products based on the findings of the research.

Differences in Environmental Behavior Practice Experience according to the Level of Environmental Literacy Factors (환경소양 요인별 수준에 따른 환경행동 실천 경험의 차이)

  • Yoonkyung Kim;Jihoon Kang;Dongyoung Lee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.153-165
    • /
    • 2023
  • This study investigates learners' environmental literacy, classifies the results by factors of environmental literacy, and then investigates the differences in the students' environmental behavior practice experiences according to the classification by factor. The study was conducted with 47 6th grade students from D elementary school located in P metropolitan city as the subject of final analysis, and environmental literacy questionnaires and environmental behavior practice experience questionnaires were used as the main data. As a result of the study, the learners were classified into three groups according to the factors of environmental literacy, and they were respectively named as the "High environmental literacy group", "low environmental literacy group", and "Low Function and Affectif group". A Word network was formed using the descriptions of environmental behavior practice experiences for each cluster, and a Degree Centrality Analysis was performed to visualize and then analyze. As a result of the analysis, "High environmental literacy group" was confirmed, 1) recognized the subjects of environmental action practice as individuals and families, 2) described his experience of environmental action practice in relation to all elements of environmental literacy, and had a relatively pessimistic view. "low environmental literacy group", and "Low Function and Affectif group" were confirmed 1) perceive the subject of environmental behavior practice as a relatively social problem, 2) the description of the experience of environmental behavior practice is relatively biased specific factors, and the "Low Function and Affectif group" is particularly focused on the knowledge element. And 3) it was confirmed that they were aware of climate change from a relatively optimistic perspective. Based on this conclusion, suggestions were made from the perspective of environmental education.

Comparative Analysis of Low Fertility Response Policies (Focusing on Unstructured Data on Parental Leave and Child Allowance) (저출산 대응 정책 비교분석 (육아휴직과 아동수당의 비정형 데이터 중심으로))

  • Eun-Young Keum;Do-Hee Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.769-778
    • /
    • 2023
  • This study compared and analyzed parental leave and child allowance, two major policies among solutions to the current serious low fertility rate problem, using unstructured data, and sought future directions and implications for related response policies based on this. The collection keywords were "low fertility + parental leave" and "low fertility + child allowance", and data analysis was conducted in the following order: text frequency analysis, centrality analysis, network visualization, and CONCOR analysis. As a result of the analysis, first, parental leave was found to be a realistic and practical policy in response to low fertility rates, as data analysis showed more diverse and systematic discussions than child allowance. Second, in terms of child allowance, data analysis showed that there was a high level of information and interest in the cash grant benefit system, including child allowance, but there were no other unique features or active discussions. As a future improvement plan, both policies need to utilize the existing system. First, parental leave requires improvement in the working environment and blind spots in order to expand the system, and second, child allowance requires a change in the form of payment that deviates from the uniform and biased system. should be sought, and it was proposed to expand the target age.

Patent Application Research Analysis on Domestic Smart Factory Technology Through SNA (SNA를 통한 국내 스마트공장 기술에 관한 특허 출원 조사 분석)

  • Jae-Hyo Hwang;Ki-Jung Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.267-274
    • /
    • 2024
  • In this paper, we investigated the number of domestic patent applications by year, the number of domestic patent disclosures by year, and the number of domestic registrations by year regarding smart factories. The number of patent applications by applicant type was investigated. Based on the patents studied, it was found that the IPC appearing in the most patents was G05B 19/418. In addition, through social network analysis of smart factory patented IPCs, it was found that G05B 19/418 was the IPC with the highest degree of centrality. From the above, if the IPC of the core technology of the patent submitted for smart factory is G05B 19/418, the technology combined with G05B 23/02, that is, the technology combining "factory control" and "monitoring" is the most patented. When the IPC of the core technology was G06Q 50/04, it was confirmed that the technology combined with G06Q 50/10, that is, the technology combining "manufacturing" and "service" was the most applied for patents. Through this, it was found that in order to apply for a patent for a smart factory, it would be necessary to file a patent application that takes into account the connectivity between IPCs.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.