• Title/Summary/Keyword: Single Particle Model

Search Result 163, Processing Time 0.027 seconds

Measurements of Adhesion Force of Micro-Sized Toner Particles Deposited on the Developing Roller Surface in a Non-contact type Laser Printer (비접촉 방식 레이저 프린터 현상롤러 위에 부착된 마이크로 토너 입자의 부착힘 측정)

  • Kim, Sang-Yoon;Lee, Dae-Young;Sheen, So-Won;Eun, Jong-Moon;Hwang, Jung-Ho
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.105-110
    • /
    • 2006
  • Study for toner adhesion is 3non as an important role in electrophotography. In this research, a centrifugal detachment method was used to measure the adhesion force of several hundred particles simultaneously and to determine its sensitivity to particle size. For uncharged toner particles, we estimated the van der Waals force based on the centrifugal force experiments. Then for charged toner particles, the centrifugal force experiments were carried out. The difference between the results for charged toner particles and the results for uncharged toner particles was compared with the image force calculated from a model which assumed that the toner charge was located at the center of the particle. In the calculations, experimental data obtained by E-SPART (Electrical-Single Particle Aerodynamic Relaxation Time) analyzer were used. The adhesion force of micro-sized toner particles deposited on the DR surface was found to be approximately $1{\sim}3$ nN.

  • PDF

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Han, Jin-Tae;Yoo, Min-Taek;Yang, Eui-Kyu;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.49-58
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models were tested twice: first using Jumoonjin sand, and second using Australian Fine sand. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System (SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Numerical analysis of internal flow and mixing performance in polymer extruder I: single screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.143-151
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in a single screw extruder system and investigated the mixing performance with respect to the screw speed and the screw pitch. The viscosity of polymer melt was described with Carreau-Yasuda model. The mixing performance was computed numerically by tracking the motions of particles in the screw element system. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the strain. The results revealed that the high screw speed reduces the residence time but increases the deformation rate while the small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance and the small screw pitch increases the distributive mixing performance.

Analytical Study on the Gas-Solid Suspension Flows through Sonic and Supersonic Nozzles (음속 및 초음속 노즐을 통한 Gas-Solid Suspension 유동에 대한 해석적 연구)

  • Sun, JianGuo;Rajesh, G.;Kim, Heuydong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • A considerable deal of work has been carried out to get an insight into the gas-solid suspension flows and to specify the particle motion and its influence on the gas flow field. In this paper an attempt is made to develop an analytical model to study the effect of nozzle inlet/exit pressure ratio, particle/gas loading and the particle diameter effect on gas-solid suspension flow. The effect of the particle/gas loading on the mass flow, Mach number, thrust coefficient and static pressure variation through the nozzle is analyzed. The results obtained show that the presence of particles seems to reduce the strength of the shock wave. It is also found that smaller the particle diameter is, bigger will be the velocity as bigger particle will have larger slip velocity. The suspension flow of smaller diameter particles has almost same trend as that of single phase flow with ideal gas as working fluid. Depending on the ambient pressure, the thrust coefficient is found to be higher for larger particle/gas loading or back pressure ratio.

Development of a Far Field type Megasonic for Nano Particle Removing (나노입자 제거용 Far Field 메가소닉 개발)

  • Lee, Yanglae;Kim, Hyunse;Lim, Euisu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1193-1201
    • /
    • 2013
  • Improved far field type(improved type) megasonic applicable to the cleaning equipment of single wafer processing type has been developed. In this study, to improve the uniformity of acoustic pressure distribution(APD), we utilize far field with relatively uniform APD, piezoelectric ceramic with a triangle hole in its center to prevent standing wave resulted from radial mode, and reflected wave from the wall of waveguide. On the basis of these methods, two analysis models of improved type were designed to which piezoelectric ceramic of different shape of electrode attached, and APD were analyzed by means of finite element method, and then one of them was selected by analysis results, finally, the selected model was fabricated. Test results show that the fabricated is better in the uniformity of APD than the imported and the conventional, also the fabricated shows high particle removal efficiency of 92.3% using DI water alone as a cleaning solution.

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model (인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.