DOI QR코드

DOI QR Code

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Xudong Qian (Department of Civil and Environmental Engineering, National University of Singapore)
  • Received : 2022.08.16
  • Accepted : 2023.09.05
  • Published : 2024.02.25

Abstract

This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

Keywords

References

  1. ABAQUS (2014a), ABAQUS/CAE User's Guide, Dassault Systemes Simulia Corp., Providence, RI, USA. 
  2. ABAQUS (2014b), ABAQUS Analysis User's Guide, Dassault Systemes Simulia Corp., Providence, RI, USA. 
  3. ABAQUS (2014c), ABAQUS User Subroutine Reference Guide, Dassault Systemes Simulia Corp., Providence, RI, USA. 
  4. ABAQUS (2014d), ABAQUS Scripting User's Guide, Dassault Systemes Simulia Corp., Providence, RI, USA. 
  5. Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3. 
  6. Azevedo, N.M., Lemos, J.V. and de Almeida, J.R. (2008), "Influence of aggregate deformation and contact behaviour on discrete particle modelling of fracture of concrete", Eng. Fract. Mech., 75, 1569-1586. https://doi.org/10.1016/J.ENGFRACMECH.2007.06.008. 
  7. Bazant, Z.P. (2004), "Scaling theory for quasi-brittle structural failure", Proc. Natl. Acad. Sci. USA, 101, 13400-13407. https://doi.org/10.1073/pnas.040409610. 
  8. Bazant, Z.P. and Pang, S.D. (2007), "Activation energy based extreme value statistics and size effect in brittle and quasi-brittle fracture", Mech. Phys. Solid., 55, 91-134. https://doi.org/10.1016/j.jmps.2006.05.007. 
  9. Bazant, Z.P. and Yu, Q. (2009), "Universal size effect law and effect of crack depth on quasi-brittle structure strength", J. Eng. Mech., 135(2), 78-84. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:2(78). 
  10. Beham, H., Kuang, J.S. and Samali, B. (2018), "Parametric finite element analysis of RC wide beam-column connections", Comput. Struct., 205, 28-44. https://doi.org/10.1016/j.compstruc.2018.04.004. 
  11. Bowyer, A. (1981). "Computing dirichlet tessellations", Comput. J., 24(2), 162-166. https://doi.org/10.1093/comjnl/24.2.162. 
  12. Birtel, V.A.M.P. and Mark, P. (2016), "Parameterized finite element modelling of RC beam shear failure", ABAQUS User's Conf., 14, 95-108. 
  13. Caballero, A., Lopez, C. and Carol, I. (2006a), "3D mesostructural analysis of concrete specimens under uniaxial tension", Comput. Method. Appl. Mech. Eng., 195, 7182-7195. https://doi.org/10.1016/j.cma.2005.05.052. 
  14. Chen, H., Xu, B., Mo, Y.L. and Zhou, T. (2018), "Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings", Constr. Build. Mater., 178, 418-431. https://doi.org/10.1016/j.conbuildmat.2018.05.052. 
  15. Chen, J., Zhang, W. and Gu, X. (2018), "Mesoscale model for cracking of concrete cover induced by reinforcement corrosion", Comput. Concrete, 22(1), 53-62. https://doi.org/10.12989/cac.2018.22.1.053. 
  16. Du, C., Jiang, S., Qin, W., Xu, H. and Lei, D. (2012), "Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale", Comput. Concrete, 10(2), 135-147. https://doi.org/10.12989/cac.2012.10.2.1350 
  17. Du, X., Jin, L. and Ma, G. (2014), "Numerical simulation of dynamic tensile-failure of concrete at meso-scale", Int. J. Impact Eng., 66, 5-17. https://doi.org/10.1016/j.ijimpeng.2013.12.005. 
  18. Erdem, S., Dawson, A.R. and Thom, N.H. (2012), "Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates", Cement Concrete Res., 42, 447-458. https://doi.org/10.1016/j.cemconres.2011.11.015. 
  19. Fuller, W.B. and Thompson, S.E. (1907), "The laws of proportioning concrete", ASCE J. Transp., 59, 67-143. https://doi.org/10.1061/TACEAT.0001979. 
  20. Gu, X., Jia, J., Wang, Z., Hong, L. and Lin, F. (2013), "Determination of mechanical parameters for elements in mesomechanical models of concrete", Front. Struct. Civil Eng., 7, 391-401. https://doi.org/10.1007/s11709-013-0225-7. 
  21. Gulsan, M.E., Cevik, A. and Mohmmad, S.H. (2021), "Crack pattern and failure mode prediction of SFRC corbels: Experimental and numerical study", Comput. Concrete, 28(5), 507-519. https://doi.org/10.12989/cac.2021.28.5.507. 
  22. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25, 299-329. https://doi.org/10.1016/0020-7683(89)90050-4. 
  23. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7. 
  24. Hoover, C.G., Bazant, Z.P., Vorel, J., Wendner, R. and Hubler, M.H. (2013), "Comprehensive concrete fracture tests: description and results", Eng. Fract. Mech., 114, 92-103. https://doi.org/10.1016/j.engfracmech.2013.08.007. 
  25. Hoover, C.G. and Bazant, Z.P. (2014), "Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests", Int. J. Fract., 187, 133-143. https://doi.org/10.1007/s10704-013-9926-0. 
  26. Huang, Y., Yang, Z., Ren, W., Liu, G. and Zhang, C. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solid. Struct., 67, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002. 
  27. Huang, Z., Deng, W., Du, S., Gu, Z., Long, W. and Ye, J. (2021), "Effect of rubber particles and fibers on the dynamic compressive behavior of novel ultra-lightweight cement composites: Numerical simulations and metamodeling", Compos. Struct., 258, 113210. https://doi.org/10.1016/j.compstruct.2020.113210. 
  28. MathWorks (2018), MATLAB: User's Guide (R2018a), The MathWorks, Inc, Natick, MA, USA. 
  29. Man, H.K. and van Mier, J.G.M. (2008), "Size effect on strength and fracture energy for numerical concrete with realistic aggregate shapes", Int. J. Fract., 154, 61-72. https://doi.org/10.1007/s10704-008-9270-y. 
  30. Panahi, H. and Genikomsou, A.S. (2022), "Comparative investigation of concrete plasticity models for nonlinear finite-element analysis of reinforced concrete specimens", Pract. Period. Struct. Des. Constr., 27(2), 04021083. https://doi.org/10.1061/(ASCE)SC.1943-5576.000067. 
  31. Pang, S.D., Bazant, Z.P. and Le, J.L. (2008), "Statistics of strength of ceramics: Finite weakest link model and necessity of zero threshold", Int. J. Fract., 154, 131-145. https://doi.org/10.1007/s10704-009-9317-8. 
  32. Qian, Z., Schlangen, E., Ye, G. and van Breugel, K. (2010), "3D lattice fracture model: Theory and computer implementation", Key Eng. Mater., 452, 69-72. https://doi.org/10.4028/www.scientific.net/kem.452-453.69. 
  33. Sabetifar, H., Nematzadeh, M. and Gholampour, A. (2022), "Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression", Comput. Concrete, 29(1), 15-29. https://doi.org/10.12989/cac.2022.29.1.015. 
  34. Sarfarazi, V., Haeri, H. and Shemirani, A.B. (2017), "The effect of compression load and rock bridge geometry on the shear mechanism of weak plane", Geomech. Eng., 13(3), 461-466. https://doi.org/10.12989/gae.2017.13.3.461. 
  35. Shemirani, A.B. (2022), "Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete", Comput. Concrete, 29(6), 407-418. https://doi.org/10.12989/cac.2022.29.6.407. 
  36. Skarzynski, L. and Tejchman, J. (2016), "Experimental investigations of fracture process in concrete by means of X-ray micro-computed tomography", Strain, 52, 26-45. https://doi.org/10.1111/str.12168. 
  37. Suchorzewski, J., Tejchman, J. and Nitka, M. (2018), "Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension", Theoret. Appl. Fract. Mech., 96, 720-739. https://doi.org/10.1016/j.tafmec.2017.10.011. 
  38. Thilakarathna, P.S.M., Kristombu Baduge, K.S., Mendis, P., Vimonsatit, V. and Lee, H. (2020), "Mesoscale modelling of concrete - A review of geometry generation, placing algorithms, constitutive relations and applications", Eng. Fract. Mech., 231, 106974. https://doi.org/10.1016/j.engfracmech.2020.106974. 
  39. Tian, Y., Tian, Z., Jin, N., Jin, X. and Yu, W. (2018), "A multiphase numerical simulation of chloride ions diffusion in concrete using electron microprobe analysis for characterizing properties of ITZ", Constr. Build. Mater., 178, 432-444. https://doi.org/10.1016/j.conbuildmat.2018.05.047. 
  40. Trong, N.N., Thanh, C.L., Khatir, S. and Wahab, W.A. (2021), "A novel approach to the complete stress strain curve for plastically damaged concrete under monotonic and cyclic loads", Comput. Concrete, 28(1), 39-53. https://doi.org/10.12989/cac.2021.28.1.039. 
  41. Trawinski, W., Tejchman, J. and Bobinski, J. (2018), "A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray µCT images", Eng. Fract. Mech., 189, 27-50. https://doi.org/10.1016/j.engfracmech.2017.10.003. 
  42. Wang, J., Wang, W. and Qian, X. (2019). "Progressive collapse simulation of the steel-concrete composite floor system considering ductile fracture of steel", Eng. Struct., 200, 109701. https://doi.org/10.1016/j.engstruct.2019.109701. 
  43. Wang, L. and Bao, J. (2015), "Mesoscale computational simulation of the mechanical response of reinforced concrete members", Comput. Concrete, 15(2), 305-319. https://doi.org/10.12989/cac.2015.15.2.305. 
  44. Wang, M., Xie, Y., Long, G., Ma, C. and Zeng, X. (2019a), "Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes", Constr. Build. Mater., 221, 151-162. https://doi.org/10.1016/j.conbuildmat.2019.06.084. 
  45. Wang, P., Gao, N., Ji, K., Stewart, L. and Arson, C. (2019b), "DEM analysis on the role of aggregates on concrete strength", Comput. Geotech., 119, 103290. https://doi.org/10.1016/j.compgeo.2019.103290. 
  46. Xie, J., Kang, E.C., Qian, X. and Yan, J.B. (2023), "Static compressive stress-strain behaviours of normal weight concrete at Arctic low temperatures", Constr. Build. Mater., 384, 131474. https://doi.org/10.1016/j.conbuildmat.2023.131474. 
  47. Xu, C., Qian, X., Tao, R. and Wang, R. (2022), "Strength of an improved connection for modular concrete structures without onsite casting", International Conference on Green Building, Civil Engineering and Smart City, Guilin, China, April.
  48. Yan, J.B., Qian, X., Liew, J.Y.R. and Zong, L. (2017), "Damage plasticity based numerical analysis on steel-concrete-steel sandwich shells used in the Arctic offshore structure", Eng. Struct., 117, 542-559. https://doi.org/10.1016/j.engstruct.2016.03.028. 
  49. Yun, Y.M. (2021). "Numerical method for the strength of two-dimensional concrete struts", Comput. Concrete, 28(6), 621-634. https://doi.org/10.12989/cac.2021.28.6.621. 
  50. Zhang, H., Gan, Y., Xu, Y., Zhang, S., Schlangen, E. and Savija, B. (2019), "Experimentally informed fracture modelling of interfacial transition zone at micro-scale", Cement Concrete Compos., 104, 103383. https://doi.org/10.1016/j.cemconcomp.2019.103383. 
  51. Zhang, L., Xie, H. and Feng, J. (2022), "Mesoscale modeling and failure mechanism of concrete considering pore structures and actual aggregate shapes", Constr. Build. Mater., 353, 129133. https://doi.org/10.1016/j.conbuildmat.2022.129133. 
  52. Zhao, C., Shi, Z. and Zhong, X. (2021), "A proposal for an approach for meso scale modeling for concrete based on rigid body spring model", Comput. Concrete, 27(3), 283-295. https://doi.org/10.12989/cac.2021.27.3.283.