DOI QR코드

DOI QR Code

Analytical Study on the Gas-Solid Suspension Flows through Sonic and Supersonic Nozzles

음속 및 초음속 노즐을 통한 Gas-Solid Suspension 유동에 대한 해석적 연구

  • Received : 2012.04.02
  • Accepted : 2012.12.17
  • Published : 2013.02.01

Abstract

A considerable deal of work has been carried out to get an insight into the gas-solid suspension flows and to specify the particle motion and its influence on the gas flow field. In this paper an attempt is made to develop an analytical model to study the effect of nozzle inlet/exit pressure ratio, particle/gas loading and the particle diameter effect on gas-solid suspension flow. The effect of the particle/gas loading on the mass flow, Mach number, thrust coefficient and static pressure variation through the nozzle is analyzed. The results obtained show that the presence of particles seems to reduce the strength of the shock wave. It is also found that smaller the particle diameter is, bigger will be the velocity as bigger particle will have larger slip velocity. The suspension flow of smaller diameter particles has almost same trend as that of single phase flow with ideal gas as working fluid. Depending on the ambient pressure, the thrust coefficient is found to be higher for larger particle/gas loading or back pressure ratio.

Gas-solid suspension 유동에서의 입자운동과 그 운동이 유동장에 미치는 영향을 명시하고, 이 유동에 대한 이해를 얻기 위해 많은 연구가 수행 되어 왔다. 본 논문에서는 gas-solid suspension 유동에 대한 노즐의 입구/출구 압력비, 입자/기체 부하, 입자의 직경에 따른 영향 등을 연구하기 위한 분석적 모델을 개발 하였다. 노즐을 통한 유량, Mach수, 추력계수 및 정압 변화에 대한 입자/기체 부하의 영향을 분석하였다. 그 결과로부터 입자의 존재로 인해 충격파의 강도가 줄어드는 것으로 판단되며, 입자직경이 커질수록 속도는 작아지고, slip velocity는 커지게 될 것이다. 또한, 더 작은 직경의 입자에 대한 suspension 유동은 이상기체에 대한 단상유동의 결과와 같은 경향이 나타나며, 주위 압력에 따라 더 큰 입자/기체 부하나 배압비에 대한 추력계수가 더 크게 나타났다.

Keywords

References

  1. J. H. Geng, H. Groenig, "Dust Suspensions Accelerated by Shock Waves," Experiments in Fluids, Vol. 28, 2000, pp.360-367 https://doi.org/10.1007/s003480050395
  2. L. S. Fan, Chao Zhu, Principles of Gas-Solid Flows, Cambridge University Press, 1998
  3. C. T. Crowe, D. F. Elger, J. A. Roberson, Engineering Fluid Mechanics, Wiley-Vch Verlag GmbH & Co. KGaA, 2008
  4. M. A. F. Kendall, "The Delivery of Particulater Vaccines and Drugs to Human Skin with A Practical Hand-held Shock Tube-based System," Shock Waves, Vol. 12, Issue 1, 2002, pp.23-30 https://doi.org/10.1007/s001930200126
  5. M. V. Protasov, A. Yu. Varaksin, T. F. Ivanov, A. F. Polyakov, "Experimental Study of Downward Turbulent Gas-Solid Flow in Narrow Pipe," 4th Int. Symp. on Turbulence, Heat and Mass Transfer, 2003
  6. Y. M. Lee, R. A. Berry, "Analysis of The Two-Phase Flow in A De Laval Spray Nozzle and Exit Plume," Journal of Thermal Spray Technology, Vol. 3, No. 2, 1994, pp.179-183 https://doi.org/10.1007/BF02648275
  7. H. Staedtke, Gasdynamic Aspects of Two-Phase Flow, Wiley-Vch Verlag GmbH & Co. KGaA, 2006
  8. S. Chellappan, G. Ramaiyan, "Experimental Study of Design Parameters of a Gas-Solid Injector Feeder," Power Technology, Vol. 48, Issue 2, 1986, pp.141-144 https://doi.org/10.1016/0032-5910(86)80072-9
  9. R. G. Boothroyd, Flowing Gas-Solid Suspen- sion, T&A Constable Ltd., 1971
  10. R. G. Maev, Volf Leshchynsky, Introduction to Low Pressure Gas Dynamic Spray, John Wiley & Sons., 2009
  11. S. Okuda, W. S. Choi, "Gas- Particle Mixture Flow in Various Types of Convergent-Divergent Nozzle", Journal of Chemical Engineering of Japan, Vol. 11, No. 6, 1978, pp.432-438 https://doi.org/10.1252/jcej.11.432
  12. C. R. Jackson, W. E. LEAR, "Generalized Shock Wave Analysis of Two-phase Flow," Mechanics Research Communications. Vol. 25, No. 6, 1998, pp.613-622 https://doi.org/10.1016/S0093-6413(98)00079-2
  13. R. Ishii and Y. Umeda, "Nozzle Flows of Gas-Particle Mixtures," Phys. Fluids, Vol. 30, No. 3, 1987, pp.752-760 https://doi.org/10.1063/1.866325
  14. S. T. Yao, L. J. Zhong, Foundation of Gas-Solid Two-phase Flow of Turboma-chinery, China Machine Press., 1994