DOI QR코드

DOI QR Code

Pulse-mode Response Characteristics of a Small LRE for the Precise 3-axes Control of Flight Attitude in SLV

우주발사체의 비행자세 3축 정밀제어를 위한 소형 액체로켓엔진의 펄스모드 응답특성

  • 정훈 (부경대학교 대학원 에너지시스템공학과) ;
  • 김종현 (부경대학교 대학원 에너지시스템공학과) ;
  • 김정수 (부경대학교 기계공학과) ;
  • 배대석 (부경대학교 기계공학과)
  • Received : 2012.11.20
  • Accepted : 2013.01.21
  • Published : 2013.02.01

Abstract

A liquid-monopropellant hydrazine thruster has several outstanding advantages such as relatively-simple structure, long/stable propellant storability, clean exhaust products, and so on. Therefore hydrazine thruster has such a wide application as orbit and attitude control system (ACS) for space vehicles. A hydrazine thruster with the medium-level thrust to be used in the ACS of space launch vehicles (SLV) has been developed, and its ground firing test result is presented in terms of thrust, impulse bit, temperature, and chamber pressure. It is verified through the performance test that the response and repeatability of thrust are very excellent, and the thrust efficiencies compared to its ideal requirement are larger than 93%.

단일액체추진제 하이드라진 추력기는 간단한 구조, 우수한 추진제 저장성, 깨끗한 반응생성물 기체 등과 같은 장점으로 수많은 우주비행체의 궤도 및 자세제어시스템으로 적용되고 있다. 우주발사체의 자세제어시스템에 적용하기 위한 중형급 하이드라진 추력기가 설계 제작되었으며, 성능검증을 위해 수행된 개발모델 추력기의 지상연소시험 결과를 추력, 임펄스 비트, 그리고 엔진 구성품별 온도 및 압력 등을 통하여 제시한다. 개발모델 엔진은 매우 우수한 추력 응답성과 재현성을 보였고, 그 추력성능 효율은 이론설계치 대비 93% 이상임을 확인할 수 있었다.

Keywords

References

  1. Sutton, G. P., Rocket Propulsion Elements, 8th ed., John Wiley & Sons Inc., 2010
  2. 김정수, 정훈, 감호동, 서항석, 서혁, "우주비행체 궤도기동/자세제어용 추력기의 개발과 발사체에의 활용현황," 한국추진공학회지, 제14권, 제6호, 2010, pp.103-120
  3. Sackheim, R. L., "Overview of United States Space Propulsion Technology and Associated Space Transportation Systems," Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp.1310-1333 https://doi.org/10.2514/1.23257
  4. Sutton, G. P., History of Liquid Propellant Rocket Engines, 1st Ed., AIAA, 2006
  5. Makled, A. E. and Belal, H., "Modeling of Hydrazine Decomposition for Monopropellant Thrusters," 13th International Conference on Aerospace Sciences and Aviation Technology, ASAT-13-PP-22, 2009
  6. Kim, J. S., Kim, J. S., Jung, H., Park, J., Kim, S., and Jang, K. W., "A Study on the Spray Characteristics of a Liquid-Propellant Thruster Injector by PIV/PDA Optical Measurements," 5th Joint ASME/JSME Fluid Eng. Conf., FEDSM2007-37105, 2007
  7. Kim, J. S. and Kim, J. S., "A Characterization of the Spray Evolution by Dual-mode Phase Doppler Anemometry in an Injector of Liquid-propellant Thruster," JMST, Vol. 23, No. 6, 2009, pp.1637-1649
  8. 정훈, 김종현, 김정수, "분사압력 및 분사각에 따른 비충돌형 인젝터의 분무특성," 한국추진공학회지, 제16권, 제3호, 2012, pp.1-8 https://doi.org/10.6108/KSPE.2012.16.3.001
  9. 감호동, 김정수, 배대석, "지상연소시험평가용 추력기 노즐의 성능해석과 형상설계," 한국추진공학회지, 제16권, 제2호, 2012, pp.10-16 https://doi.org/10.6108/KSPE.2012.16.2.010
  10. DOD(USA), "Performance Specification (Propellant, Hydrazine)," MIL-PRF-26536F, 2011
  11. 김정수, "단일액체추진제 소형 추력기의 진공환경 연소시험 및 성능특성 평가," 한국추진공학회지, 제8권, 제4호, 2004, pp.84-90
  12. Parker, J. M., Thunnissen, D. P., Blandino, J. J., and Ganapathi, G. B., "The Preliminary Design and Status of a Hydrazine MilliNewton Thruster Development," 35th AIAA/ASME/SAE/ ASEE Joint Propulsion Conf. and Exhibit, AIAA-99-2596, 1999
  13. Fire, Explosion, Compatibility, and Safety Hazards of Hypergols-Hydrazine, AIAA-SP-084, 1999
  14. Price, T. W. and Evans, D. D., "The Status of Monopropellant Hydrazine Technology," NASA Technical Report 32-1227, 1968
  15. Rocket Research Corporation, "Development of Design and Scaling Criteria for Monopropellant Hydrazine Reactors Employing Shell 405 Spontaneous Catalyst," RRC-66- R-76, Vol. II, 1967
  16. Hill, P. G. and Peterson, C. R., Mechanics and Thermodynamics of Propulsion, 2nd Ed., Pearson, 1991
  17. 김종현, 정훈, 김정수, "우주발사체 자세제어용 하이드라진 추력기의 정상상태 추력 특성," 한국추진공학회지, 제16권, 제6호, 2012, pp.48-55 https://doi.org/10.6108/KSPE.2012.16.6.048

Cited by

  1. Test & Evaluation for the Configuration Optimization of Thrust Chamber in 70 N-class N2H4Thruster (Part II: Pulse-mode Performance According to the Chamber Length Variation) vol.18, pp.1, 2014, https://doi.org/10.6108/KSPE.2014.18.1.050
  2. Effects of Characteristic Length Variation for Thrust Chamber on the Hot-fire Performance of Hydrazine Thruster vol.42, pp.2, 2014, https://doi.org/10.5139/JKSAS.2014.42.2.144
  3. An Approach to the Optimization of Catalyst-bed L/D Configuration in 70 N-class Hydrazine Thruster vol.17, pp.6, 2013, https://doi.org/10.6108/KSPE.2013.17.6.030
  4. A Computational Study on the Shock Structure and Thrust Performance of a Supersonic Nozzle with Overexpanded Flow vol.18, pp.4, 2014, https://doi.org/10.6108/KSPE.2014.18.4.001