• Title/Summary/Keyword: Flow Choking

Search Result 58, Processing Time 0.025 seconds

A Study of the Compound Choking Phenomenon in Gas Flows (기체유동에서 발생하는 복합초킹 현상에 관한 연구)

  • Lee, Jun-Hee;Baek, Seung-Cheol;Choi, Bo-Gyu;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • Compound choking frequently occurs at a minimum area of the flow passage, where two or more streams which have different stagnation properties are merged. This phenomenon is especially important in that the flow choking may not be given by Mach number, M=1 at the nozzle throat. In order to obtain a detailed understanding of the flow characteristics involved in the compound flow choking, the two-dimensional, compressible, Wavier-Stokes equations are solved using a fully implicit finite volume method and the predicted solutions are compared with the results of the one-dimensional theoretical analysis. Stagnation pressure and temperature of each stream are changed to investigate the effects on the compound choking. The results show that stagnation pressures of each stream affect Mach number and static pressure distributions downstream of the exit of the convergent nozzle. However, the flow characteristics of the compound choking are not significantly dependent on the total temperature ratio.

A Study of the Compound Choking Phenomenon of Gas Flow in a Converging Nozzle (축소노즐에서 발생하는 기체유동의 복합 초킹현상에 관한 연구)

  • Lee Jun-Hee;Woo Sun-Hoon;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.147-150
    • /
    • 2002
  • In general, a single gas flow through a converging nozzle is choked when the pressure communications between the downstream and upstream flowfields are broken by the sonic condition of Mach number, M=1. A similar phenomenon may occur In two streams of different stagnation properties flowing side by side in a converging nozzle. In this case, the limiting condition of M=1 for flow choking is no longer applied to such a compound compressible flow. The compound choking phenomenon can be explained by means of a compound sound wave at the nozzle exit. In order to detail the flow characteristics involved in such a compound choking of the two streams, the two-dimensional, compressible, Wavier-Stokes equations have been solved using a fully implicit finite volume method and compared with the results of the one-dimensional theoretical analysis. The computational and theoretical results show that the compound sound wave can reasonably explain the compound choking phenomenon of the two streams in the convergent flow channel.

  • PDF

Estimation of Secondary Flow Pressure of an Annular-Injection-Type Supersonic Ejector Using Fabri Choking (패브리 초킹을 이용한 환형분사 초음속 이젝터의 부유동 압력 예측)

  • Kim Sehoon;Kwon Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • A theoretical analysis is developed for an annular-injection-type supersonic ejector having a second-throat downstream the ejector under the assumption that the Fabri choking is placed in mixing chamber. Non mixing theory is applied to formulate secondary flow pressure in the region between inlet of the mixing chamber and Fabri choking. To describe the shock standing at the inlet of the mixing chamber, two dimensional oblique shock relations are used and it is assumed that the shock affects only primary flow at Fabri choking plane. Physical constraint, which is that primary flow pressure and secondary flow pressure are same at Fabri choking plane, is added. In conclusion, it agrees well with experiments in case of small contracting angle of mixing chamber, under 4degrees.

Meanline analysis method for performance analysis of a multi-stage axial turbine in choking region (다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법)

  • Kim, Sangjo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.881-888
    • /
    • 2017
  • In general, the choking phenomenon occurs by flow acceleration for a turbine at high pressure ratio condition. In choking condition, total pressure ratio increases without mass flow rate variation. It is hard to predict choking characteristics by using conventional meanline analysis which used mass flow inlet boundary condition. In the present study, the algorithm for predicting choking point is developed to solve the problem. Moreover, performance estimation algorithm after choking is presented by reflecting the flow behaviour of flow expansion at choked nozzle or rotor. The analysis results are compared with 3D CFD analysis and experimental data to validate present method.

  • PDF

Meanline Analysis Method for Performance Analysis of a Multi-stage Axial Turbine in Choking Region (다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법)

  • Kim, Sangjo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.20-28
    • /
    • 2018
  • In general, the choking phenomenon occurs due to the flow acceleration of a turbine under high pressure-ratio. During choking, the total pressure ratio increases without any variation in the mass flow rate. It is difficult to predict choking characteristics by using conventional meanline analysis, which utilizes mass flow inlet boundary condition. In this study, an algorithm for predicting the choking point is developed to solve this problem. In addition, a performance estimation algorithm is presented to estimate the performance after choking, based on the flow behavior of flow expansion at the choked nozzle or rotor. The analysis results are compared with 3D CFD analysis and experimental data to validate this method.

A Study on Transient Characteristics of Flow Caused by Heat Addition in Supersonic Nozzle (초음속 노즐 내부 유동장의 가열에 의한 천이 특성에 대한 연구)

  • Chung, Jin-Do;Kim, Jang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.80-86
    • /
    • 2005
  • This study presents numerical solutions of the two-dimensional Navier-Stokes equations for supersonic unsteady flow in a convergent-divergent nozzle with heat addition. The TVD scheme in generalized coordinates is employed in order to calculate the moving shock waves caused by thermal choking. We discuss on transient characteristics, start and unstart phenomena, fluctuations of specific thrust caused by thermal choking and viscous effects. We prove that the control of separation of boundary layer is the most important key problem to prevent the thermal choking.

Numerical Analysis on the Thermal Choking Process In a Model SCRamjet Engine (모델 스크림제트 연소기내의 열질식과정 수치해석)

  • Moon, G.W.;Choi, J.Y.;Jeung, I.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.76-84
    • /
    • 2000
  • A numerical study was conducted for the investigation of thermal choking process in a model scramjet engine based on the experimental results at the Australian National University. The results of numerical simulation showed that thermal choking process could be related to the interaction between hypersonic flow and fuel-air mixing process. Especially, we could make sure that turbulent mixing was most important parameter to the thermal choking process.

  • PDF

A PROPOSED CORRELATION FOR CRITICAL FLOW RATE OF WATER FLOW

  • KIM, YEON-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.135-138
    • /
    • 2015
  • A new correlation predicting the idealized critical mass-flow rates of water for subcooled and saturated liquid water including two-phase water flow was developed for a wide range of upstream stagnation pressures (e.g., 0.5-20.0 MPa). A choking correction factor dependent on the upstream stagnation pressure and subcooled temperature was introduced into a new correlation, and its values were suggested to satisfy the idealized nozzle data within 10% error ranges. The suggested correlation will be instructive and helpful for related studies and/or engineering works.

Analysis on Two Parallel Flows in Convergent Channel (축소 유로내의 두 평행 유동에 대한 해석)

  • Kwon, Jin-Kyung;Kim, Tae-Wook;Kim, Jin-Hyun;Kim, Jae-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Compound flow by confluence of two parallel flows through a convergent channel and its choking phenomenon are calculated by one-dimensional isentropic model and completely mixing model. Optical observations and pressure measurements for subsonic/subsonic compound flows are carried out and compared with the results of one-dimensional calculations. As a result, it is found that inlet conditions of one flow influence the behavior of the other flow as well as the choking condition and present experimental data agree well with the results of one-dimensional calculations.

A Numerical Study on Characteristics of Unsteady Flows Caused by Heat Addition in a Convergent-Divergent Duct (축소-확대 유로에서의 가열에 의한 비정상 유동의 특성에 관한 연구)

  • Kim, Jang-Woo;Chung, Jin-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.765-771
    • /
    • 2002
  • This Paper presents numerical solutions of two-dimensional Euler equations for supersonic steady and unsteady flows with heat addition in a convergent-divergent duct, The Van Leer FVS (flux vector splitting) method in generalized coordinates is employed in order to calculate the inviscid strong shock waves caused by thermal choking. We discuss on transient characteristics, start and unstart phenomena caused by thermal choking, limit of equivalence ratio to avoid thermal choking and fluctuation of specific thrust caused by thermal choking. We prove that thermal choking is a serious problem in view of engine performance.