• 제목/요약/키워드: Simulated body fluid

Search Result 123, Processing Time 0.238 seconds

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(III) - SEM Photographs of Bonding Properties between Hydroxyapatite Ceramics Composites in the Simulated Body Fluid- (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제3보) -인공체액에서의 Hydroxyapatite 세라믹 복합체간의 결합의 전자현미경 관찰-)

  • Kim, Se-Kwon;Choi, Jin-Sam;Lee, Chang-Kook;Byun, Hee-Guk;Jean, You-Jin;Lee, Eung-Ho;Park, In Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.322-329
    • /
    • 1998
  • Chemical bonding was investigated in the simulated body fluid of several selected hydroxyapatite-containing composites. The hydroxyapatite-containing composites chemically bonded with each other in the simulated body fluid after 4 weeks. Bioglass was strongly bonded in the simulated body fluid, but bonding strength was not depended on composition. Their composite bodies were chemically bonded by heterogeneous nucleation and growth at the interfaces of the specimens in the simulated body fluid.

  • PDF

SIMULATION OF FLUID-STRUCTURE INTERACTION OF A TOWED BODY USING AN ASYMMETRIC TENSION MODEL (비대칭 장력 모델을 이용한 예인 물체의 유체-구조 상호작용 모사)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The fluid-structure interaction of a towed body is simulated using a developed code, which is based on the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method. To improve the stability in the coupling between the fluid and structure domains, a scheme is used, in which the effects of structure deformation are treated implicitly. The developed code is validated for the fluid-structure interaction problem through comparisons with other results on the vortex-induced vibration of elastically mounted cylinders. To simulate behavior of a towed body, an asymmetric tension modelling for a towing cable is suggested. In the suggested model, the tension is proportional to the elongation of the cable, but the cable has no effect on the body motion whenever the distance between the endpoints of the cable is smaller than the original length of the cable. The fluid-structure interactions of a towed body are simulated on the basis of different parameters of the towing cables. It is observed that the suggested tension model predicts the snapping for a shorter towing cable, which is in accordance with the reported results.

FLUID-BODY INTERACTION ANALYSIS OF FLOATING BODY IN THREE DIMENSIONS (3차원 부유체의 유체-물체 연성해석)

  • Go, G.S.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fluid-body interaction analysis of floating body with six degree-of-freedom motion is presented. In this study, three-dimensional incompressible Navier-Stokes equations are employed as a governing equation. The numerical method is based on a finite-volume approach on a cartesian grid together with a fractional-step method. To represent the body motion, the immersed boundary method for direct forcing is employed. In order to simulate the coupled six degree-of-freedom motion, Euler's equations based on rigid body dynamics are utilized. To represent the complex body shape, level-set based algorithm is utilized. In order to describe the free surface motion, the volume of fluid method utilizing the tangent of hyperbola for interface capturing scheme is employed. This study showed three different continuums(air, water and body) are simultaneously simulated by newly developed code. To demonstrate the applicability of the current approach, two different problems(dam-breaking with stationary obstacle and water entry) are simulated and all results are validated.

Computation of Stratified Flows using Finite Difference Lattice Boltzmann Method

  • Kang, Ho-Keun;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.511-519
    • /
    • 2003
  • A stratified flow is simulated using the finite difference lattice Boltzmann method (FDLBM). The effect of body force (gravity) in a simple one-dimensional model with the lattice BGK 9 velocity is examined. The effect of body force in the compressible fluid is greatly different from that of the incompressible fluid In a compressible fluid under gravitational force, the density stratification is not sufficient and the entropy stratification is essential. The numerical simulation of a line sink compressible stratified flow in two-dimensional channel is also carried out. The results show that selective withdrawal is established when the entropy of the upper part increases. and the simulated results using FDLB method are satisfactory compared with the theoretical one.

HREM Analysis of Apatite Formation in Modified-Simulated Body Fluid Containing Bovine Serum Albumin (소 혈청 알부민이 함유된 유사체액 내에서 아파타이트의 생성에 대한 고분해능 전자현미경 분석)

  • Kim, Woo Jeong;Lee, Kap Ho;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Process of the hydroxyapatite (HA) formation on bioactive titanium metal prepared by NaOH treatment in a modified-simulated body fluid (mSBF) containing bovine serum albumin (BSA) was investigated by high resolution transmission electron microscope attached with energy dispersive X-ray spectrometer (EDX). The amorphous titanate, which was formed on titanium surface by NaOH treatment, combined with the calcium ions in the liquid to form an amorphous calcium titanite. With increasing of soaking time in the liquid, an amorphous calcium titanite combined with the phosphate ions to form an amorphous calcium phosphate with low Ca/P atomic ratio, and it grows as aggregates of plate (or needle)-like substance on titanium surface. The crystalline apatite layers, which are needle-shaped with the c axis parallel to the long axis, are formed in an amorphous calcium phosphate with further increase in soaking time. The formation of needle-shaped apatite layers can be explained by electrostatic effects and difference of concentration between calcium, phosphate, and albumin ions.

Inhibition of Osteoclast differentiation based on precipitation time of titanium surfaces immersed in modified simulated body fluid (Modified simulated body fluid에 침전한 티타늄 표면에서 침전 기간에 따라 나타나는 파골 세포의 분화억제 양상)

  • Chang, Hyun-min;Heo, Seong-Joo;Kim, Seong-Kyun;Koak, Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.142-149
    • /
    • 2019
  • Purpose: The purpose of this study is to investigate the changes of osteoclast differentiation inhibition according to the period of precipitation when titanium disks were immersed in Modified simulated body fluid (mSBF). Materials and methods: Titanium alloy (Ti grade III) disks with machined surfaces and anodized surfaces were immersed in distilled water and mSBF, respectively. The immersion periods were 7 days, 14 days, 21 days and 28 days, and the control group was immersed in distilled water for each period. RAW 264.7 cells capable of differentiating into osteoclasts were used to measure the number of adherent cells, the measurement of TRAP activity, and the expression pattern of NFATc1 by western blotting. Results: The degree of inhibition of osteoclast differentiation was found to be statistically significant when the disks were immersed in mSBF for more than 14 days on both machined surfaces and anodized surfaces. There was no correlation between immersion time and cell attachment. When the disks were immersed for more than 14 days, TRAP activity was decreased and NFATc1 expression was inhibited. Futhermore, the decrease in TRAP activity and the inhibition of NFATc1 expression remained unchanged. Conclusion: Immersion of titanium disks in mSBF for more than 14 days can prevent RAW 264.7 cells from differentiating into osteoclasts. Inhibition activity does not change even if the immersion period is for more than 14 days.

Interactive Simulation between Rigid body and Fluid using Simplified Fluid-Surface Model (간략화된 유체 표면모델을 이용한 강체와 유체의 상호작용 시뮬레이션)

  • Kim, Eun-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.323-328
    • /
    • 2009
  • Natural Phenomena are simulated to make computer users feel verisimilitude and be immersed in games or virtual reality. The important factor in simulating fluid such as water or sea using 3D rendering technology in games or virtual reality is real-time interaction and reality. There are many difficulties in simulating fluid models because it is controlled by many equations of each specific situation and many parameter values. In addition, it needs a lot of time in processing physically-based simulation. In this paper, I suggest simplified fluid-surface model in order to represent interaction between rigid body and fluid, and it can make faster simulation by improved processing. Also, I show movement of fluid surface which is come from collision of rigid body caused by reaction of fluid in representing interaction between rigid body and fluid surface. This natural fluid-surface model suggested in this paper is represented realistically in real-time using fluid dynamics veri similarly. And the fluid-surface model will be applicable in games or animation by realizing it for PC environment to interact with this.

  • PDF

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

Simulation of Body Motion Caused by a Solitary Wave using the FDS-HCIB Method (FDS-HCIB법을 이용한 고립파에 의한 물체 운동 모사)

  • Shin, Sangmook;Kim, In Chul;Kim, Yong Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.265-273
    • /
    • 2014
  • Wave-body interaction is simulated using a developed code based on the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method. A free surface is captured as a moving contact discontinuity within a fluid domain and an approximated Riemann solver is used to estimate the inviscid flux across the discontinuity. Immersed boundary nodes are identified inside an instantaneous fluid domain near a moving body, then dependent variables are reconstructed at those immersed boundary nodes based on interpolation along local normal lines to the boundary. Free surface flows around an oscillating cylinder are simulated and the computed wave elevations are compared with other reported results. The generation of a solitary wave by a moving wave-maker is simulated and the time histories of wave elevations at two different points are compared with other results. The developed code is applied to simulate body motion of an elastically mounted circular cylinder as a solitary wave passes the body. The force acting on an elastically mounted cylinder is compared with the force acting on a fixed cylinder. Grid independency of the computed body motion is established based on a comparison of results using three different-size grids.

Study on the Biocompability of Hydroxyapatite Bioceramics(I) Bonding between Hydroxyapatite Bioceramics in Simulated Body Fluid (Hydroxyapatite Bioceramics의 생체 친화성에 관한 연구(I) 인공체액에서의 Hydroxyapatite Bioceramics간의 결합)

  • 고형열;김양수;송종택;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.311-320
    • /
    • 1990
  • Hydroxyapatite powders were synthesized with Ca/P=1.67, 1.70 and pH=7, 11 by precipitation method and fluorine substituted hydroxyapatite ceramics were prepared using these powders. After characterization of these hydorxyapatite bioceramics, chemical bonding between these sepcimens in simulated body fluid was investigated. Bysubstitution of 7.5% of fluorine, hydroxyapatite was prevented to decompose into β-tricalcium phosphate and its sintered density and mechanical strength were increased. The bending strength of these hydroxyapatite ceramics was 137MPa. The hydroxyapatite ceramics chemically bonded each other in Ringer's solution and the component of bonded layer was also hydroxyapatite.

  • PDF