HREM Analysis of Apatite Formation in Modified-Simulated Body Fluid Containing Bovine Serum Albumin

소 혈청 알부민이 함유된 유사체액 내에서 아파타이트의 생성에 대한 고분해능 전자현미경 분석

  • Kim, Woo Jeong (Division of Nano Technology, Chungnam National University) ;
  • Lee, Kap Ho (Division of Nano Technology, Chungnam National University) ;
  • Hong, Sun Ig (Division of Nano Technology, Chungnam National University)
  • 김우정 (충남대학교 공과대학 나노공학부) ;
  • 이갑호 (충남대학교 공과대학 나노공학부) ;
  • 홍순익 (충남대학교 공과대학 나노공학부)
  • Received : 2007.11.16
  • Published : 2008.02.10

Abstract

Process of the hydroxyapatite (HA) formation on bioactive titanium metal prepared by NaOH treatment in a modified-simulated body fluid (mSBF) containing bovine serum albumin (BSA) was investigated by high resolution transmission electron microscope attached with energy dispersive X-ray spectrometer (EDX). The amorphous titanate, which was formed on titanium surface by NaOH treatment, combined with the calcium ions in the liquid to form an amorphous calcium titanite. With increasing of soaking time in the liquid, an amorphous calcium titanite combined with the phosphate ions to form an amorphous calcium phosphate with low Ca/P atomic ratio, and it grows as aggregates of plate (or needle)-like substance on titanium surface. The crystalline apatite layers, which are needle-shaped with the c axis parallel to the long axis, are formed in an amorphous calcium phosphate with further increase in soaking time. The formation of needle-shaped apatite layers can be explained by electrostatic effects and difference of concentration between calcium, phosphate, and albumin ions.

Keywords

References

  1. H. M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 32, 409 (1996). https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
  2. T. Kokubo, F. Miyaji, H. M. Kim and T. Nakamura, J. Am. Ceram. Soc. 79, 1127 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  3. C. Ohtsuki, H. Idia, S. Hayakawa and A. Osaka, J. Biomed. Mater. Res. 35, 39 (1997). https://doi.org/10.1002/(SICI)1097-4636(199704)35:1<39::AID-JBM5>3.0.CO;2-N
  4. S. Kaneko, K. Tsuru, S. Hayakawa, S. Takemoto, C. Ohtsuki, T. Ozaki and H. Inoue, Biomaterials, 22, 875 (2001). https://doi.org/10.1016/S0142-9612(01)00036-9
  5. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yammamuro, J. Biomed. Mater. Res. 24, 721 (1990). https://doi.org/10.1002/jbm.820240607
  6. P. Li, Ch. Ohtsuki, T. kokubo, K. Nakanishi, N. Soga and K. de Groot, J. Biomed Mater. Res. 28, 7 (1994). https://doi.org/10.1002/jbm.820280103
  7. P. Li, I. Kangasniemi, K. de Groot and T. Kokubo, J. Am. Ceram. Soc. 5, 1307 (1994).
  8. R. Z. LeGeros, Calcium phosphates in oral biology and medicine, p.12, Karger, Basel, Switzerland. (1991)
  9. E. D. Eanes E. Bonucci, CRC Press, p.1, Boca Raton, USA (1992).
  10. L. Jonasova, F. A. Muller, A. Helebrant, J. Strnad and P. Greil, Biomaterials 25, 1187 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.009
  11. T. Kokubo, Thermochim Acta 280/281, 479 (1996).
  12. T. Kokubo, F. Miyaji and H. M. Kim, J. Am. Ceram. Soc. 4, 1127 (1996).
  13. H. Takatama, H. M. Kim, T. Kokubo and T. Nakamura, J. Biomed Mater. Res. 57, 441 (2001). https://doi.org/10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-B
  14. L. Jonasova, F. Muller, A. Helebrant, J. Strnad and P. Greil, Biomaterials 23, 3095 (2002). https://doi.org/10.1016/S0142-9612(02)00043-1
  15. N. Eidelman, W. E. Browm and J. L. Meyer, J. Crystal Growth 113, 643 (1991). https://doi.org/10.1016/0022-0248(91)90100-J
  16. Y. Leng, J. Chen and S. Qu, Biomaterials 24, 2125 (2003). https://doi.org/10.1016/S0142-9612(03)00036-X
  17. S. Shimabayashi, Y. Tanizawa and K. Ishida, Chem. Pharm. Bull., (Toyko) 39, 2183 (1991). https://doi.org/10.1248/cpb.39.2183
  18. D. T. Wassell, R. C. Hall and G. Embery, Biomaterials 16, 697 (1995). https://doi.org/10.1016/0142-9612(95)99697-K
  19. J. Lima, S. R. Sousa, A. Ferreira and M. A. Barbosa, J. Biomed. Mater. Res. 55, 45 (2001). https://doi.org/10.1002/1097-4636(200104)55:1<45::AID-JBM70>3.0.CO;2-0
  20. W. L. Murphy, D. J. Mooney, J. Am. Chem. Soc. 124, 1910 (2002). https://doi.org/10.1021/ja012433n
  21. H. O. Kim, W. J. Kim, K. H. Lee and S. I. Hong, Kor. J. Mater. Res. 17, 408 (2007). https://doi.org/10.3740/MRSK.2007.17.8.408
  22. A. Klinger, D. Steinberg, D. Kohavi and M. N. Sela, J. Biomed. Mater. Res. 36, 387 (1997). https://doi.org/10.1002/(SICI)1097-4636(19970905)36:3<387::AID-JBM13>3.0.CO;2-B
  23. L. N. Luong, S. I. Hong, R. J. Patel, M. E. Outslay and D. H. Kohn, Biomaterials 27, 1175 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.043