• 제목/요약/키워드: Set-valued Choquet integrals.

검색결과 20건 처리시간 0.031초

On fuzzy number-valued Choquet integrals

  • 장이채;김태균
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.7-7
    • /
    • 2003
  • We studied closed set-valued Choquet integrals in two papers(1997, 2000) and convergence theorems under some sufficient conditions in two papers(2003), for examples : (i) convergence theorems for monotone convergent sequences of Choquet integrably bounded closed set-valued functions, (ii) covergence theorems for the upper limit and the lower limit of a sequence of Choquet integrably bounded closed set-valued functions. In this presentation, we consider fuzzy number-valued functions and define Choquet integrals of fuzzy number-valued functions. But these concepts of fuzzy number-valued Choquet inetgrals are all based on the corresponding results of interval-valued Choquet integrals. We also discuss their properties which are positively homogeneous and monotonicity of fuzzy number-valued Choquet integrals. Furthermore, we will prove convergence theorems for fuzzy number-valued Choquet integrals. They will be used in the following applications : (1) Subjectively probability and expectation utility without additivity associated with fuzzy events as in Choquet integrable fuzzy number-valued functions, (2) Capacity measure which are presented by comonotonically additive fuzzy number-valued functionals, and (3) Ambiguity measure related with fuzzy number-valued fuzzy inference.

  • PDF

컴팩트 집합치 쇼케이 적분에 관한 연구 (On compact set-valued Choquet integrals)

  • 김현미;장이채
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.170-173
    • /
    • 2005
  • We note that Jang et at. studied closed set-valued Choquet integrals with respect to fuzzy measures. In this paper, we consider Choquet integrals of compact set-valued functions, and prove some properties of them. In particular, using compact set-valued functions, instead of interval valued we investigate characterization of compact set-valued Choquet integrals.

  • PDF

퍼지측도의 auto-연속성과 집합치 쇼케이적분 (The autocontinuity of fuzzy measures and set-valued Choquet integrals)

  • 장이채;전종덕
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.1-3
    • /
    • 2001
  • In this paper, we define the convergence in measure and convergence in distribution for set-valued Choquet integrals. Using there definitions, we discuss convergence theorems for set-valued Choquet integrals.

  • PDF

콤팩트 집합치 쇼케이적분에 관한 연구 (A note on compact set-valued Choquet integrals)

  • 장이채;김현미
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.588-592
    • /
    • 2005
  • 퍼지측도와 관련된 폐집합치 쇼케이적분에 대해 장에 의해 연구되어 왔음을 알 수 있다. 본 논문에서는 콤팩트 집합치 함수의 쇼케이적분을 생각하고 이와 관련된 성질들을 조사한다. 특히, 구간치 함수 대신에 콤팩트 집합치 함수를 이용하여 콤팩트 집합치 쇼케이적분의 특성들을 조사한다.

Some relation between compact set-valued functionals and compact set-valued Choquet integrals

  • 장이채;김현미
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.129-132
    • /
    • 2005
  • In this paper, we consider comonotonically additive compact set-valued functionals instead of interval-valued functionals and study some characterizations of them. And we also investigate some relation between compact set-valued functionals and compact set-valued Choquet integrals.

  • PDF

단조집합함수에 의해 정의된 구간치 쇼케이적분에 대한 르베그형태 정리에 관한 연구 (On Lebesgue-type theorems for interval-valued Choquet integrals with respect to a monotone set function.)

  • 장이채;김태균
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.195-198
    • /
    • 2007
  • In this paper, we consider Lebesgue-type theorems in non-additive measure theory and then investigate interval-valued Choquet integrals and interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore, we discuss the equivalence among the Lebesgue's theorems, the monotone convergence theorems of interval-valued fuzzy integrals with respect to a monotone set function and find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.

  • PDF

단조집합함수에 의해 정의된 구간치 쇼케이적분에 대한 르베그형태 정리에 관한 연구 (On Lebesgue-type theorems for interval-valued Choquet integrals with respect to a monotone set function)

  • 장이채;김태균
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.749-753
    • /
    • 2007
  • In this paper, we consider Lebesgue-type theorems in non-additive measure theory and then investigate interval valued Choquet integrals and interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore, we discuss the equivalence among the Lebesgue's theorems, the monotone convergence theorems of interval-valued fuzzy integrals with respect to a monotone set function and find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.