• Title/Summary/Keyword: Sensor technology

Search Result 8,664, Processing Time 2.501 seconds

The design of a scintillation system based on SiPMs integrated with gain correction functionality

  • Lin, Zhenhua;Hautefeuille, Benoit;Jung, Sung-Hee;Moon, Jinho;Park, Jang-Guen
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.164-169
    • /
    • 2020
  • Use of SiPM has been considered as an alternative to PMT, because of its compact size, low-operating voltage, non-sensitive to electromagnetic, low costs and so on. The main limitation for the use of SiPM is due to its small sensitive area compared to PMT that limits the light collection, and therefore the sensor energy resolution. In this article we studied the effect of increasing the number of SiPM by connecting them in parallel to increase the active detection area. This allowed us to compare the different energy resolution measurements. 137Cs has been selected as reference to study the energy resolution for 662 keV gamma-rays. Another investigation was to compare the minimum detectable gamma energy under various SiPM configurations. It has been found that the use of 4 SiPM arrays can greatly improve the energy resolution up to 4% than only one SiPM array, meanwhile use of more than 2 SiPM arrays does not increase the energy resolution significantly. Thus we can conclude that for a large area of cylindrical scintillator (3 × 3 inches), the use of SiPMs are limited to a certain number or certai active area depending on the commercial SiPMs, and its cost should be less than traditional PMT for the cost-effective and compact size considerations. It is well known that the gain of SiPM varies with temperature. In this article, we also calibrated gain to guarantee the same position of photoelectric peak in response of different temperatures.

Virtual Metrology for predicting $SiO_2$ Etch Rate Using Optical Emission Spectroscopy Data

  • Kim, Boom-Soo;Kang, Tae-Yoon;Chun, Sang-Hyun;Son, Seung-Nam;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.464-464
    • /
    • 2010
  • A few years ago, for maintaining high stability and production yield of production equipment in a semiconductor fab, on-line monitoring of wafers is required, so that semiconductor manufacturers are investigating a software based process controlling scheme known as virtual metrology (VM). As semiconductor technology develops, the cost of fabrication tool/facility has reached its budget limit, and reducing metrology cost can obviously help to keep semiconductor manufacturing cost. By virtue of prediction, VM enables wafer-level control (or even down to site level), reduces within-lot variability, and increases process capability, $C_{pk}$. In this research, we have practiced VM on $SiO_2$ etch rate with optical emission spectroscopy(OES) data acquired in-situ while the process parameters are simultaneously correlated. To build process model of $SiO_2$ via, we first performed a series of etch runs according to the statistically designed experiment, called design of experiments (DOE). OES data are automatically logged with etch rate, and some OES spectra that correlated with $SiO_2$ etch rate is selected. Once the feature of OES data is selected, the preprocessed OES spectra is then used for in-situ sensor based VM modeling. ICP-RIE using 葰.56MHz, manufactured by Plasmart, Ltd. is employed in this experiment, and single fiber-optic attached for in-situ OES data acquisition. Before applying statistical feature selection, empirical feature selection of OES data is initially performed in order not to fall in a statistical misleading, which causes from random noise or large variation of insignificantly correlated responses with process itself. The accuracy of the proposed VM is still need to be developed in order to successfully replace the existing metrology, but it is no doubt that VM can support engineering decision of "go or not go" in the consecutive processing step.

  • PDF

Synthesis of Silver Nanofibers Via an Electrospinning Process and Two-Step Sequential Thermal Treatment and Their Application to Transparent Conductive Electrodes (전기방사법과 이원화 열처리 공정을 통한 은 나노섬유의 합성 및 투명전극으로의 응용)

  • Lee, Young-In;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.562-568
    • /
    • 2012
  • Metal nanowires can be coated on various substrates to create transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these metal nanowire based transparent conductive films is that the resistance between the nanowires is still high because of their low aspect ratio. Here, we demonstrate high-performance transparent conductive films with silver nanofiber networks synthesized by a low-cost and scalable electrospinning process followed by two-step sequential thermal treatments. First, the PVP/$AgNO_3$ precursor nanofibers, which have an average diameter of 208 nm and are several thousands of micrometers in length, were synthesized by the electrospinning process. The thermal behavior and the phase and morphology evolution in the thermal treatment processes were systematically investigated to determine the thermal treatment atmosphere and temperature. PVP/$AgNO_3$ nanofibers were transformed stepwise into PVP/Ag and Ag nanofibers by two-step sequential thermal treatments (i.e., $150^{\circ}C$ in $H_2$ for 0.5 h and $300^{\circ}C$ in Ar for 3 h); however, the fibrous shape was perfectly maintained. The silver nanofibers have ultrahigh aspect ratios of up to 10000 and a small average diameter of 142 nm; they also have fused crossing points with ultra-low junction resistances, which result in high transmittance at low sheet resistance.

Scent Analysis Using an Electronic Nose and Flowering Period of Potted Diploid and Tetraploid Cymbidium (심비디움 2배체, 4배체의 분화수명 조사 및 전자코를 이용한 향기패턴분석)

  • Hwang, Sook-Hyun;Kim, Mi-Seon;Park, Pue-Hee;Park, So-Young
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.163-171
    • /
    • 2016
  • We investigated the intensity and pattern of the scent produced by diploid and tetraploid Cymbidium flowers, using an electronic nose with 6 metal oxide sensors (MOS). The MOS responses were evaluated by principal component analysis, discriminant function analysis, and sensor data. These analyses revealed that tetraploid flowers had a stronger scent than diploid flowers in Cymbidium Golden Elf 'Sundust'. Furthermore, among the different flower parts-column, lip, and petals-the column produced the strongest scent. There was no significant difference between the flowering periods of diploid and tetraploid potted Cymbidium Golden Elf 'Sundust' and Cymbidium Elma 'Orient Toyo' grown in a greenhouse. Moreover, there were no significant differences between the number of flowers per flower stem and the length of flower stems on the diploid and tetraploid plants of these two Cymbidium cultivars. This study provides potentially useful information for the breeding of polyploidy Cymbidium in the floriculture industry.

A study on the Scheme of Extending Break Power Controller for Permanent Magnet Synchronous Motor(PMSM) using a Microprocessorr (마이크로프로세서를 이용한 영구자석형 동기전동기(PMSM) 제동력 확보 제어기 설계에 관한 연구)

  • Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Gi-Ho;Hwang, Lark-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.524-544
    • /
    • 2013
  • In this paper, A tow system of miniature establishes each motor to individual 1C1M methods to control for a permanent magnet synchronous motors (PMSM) is constructed. You assume that is wiring having had the ability that can all absorb regenerative power which occurred when permanent magnet synchronous motors(PMSM) brake is all used to it, and to occur about agreement use scope expansion my electricity. To regenerative braking power securities of a PMSM and to stop of the bronzes my a control security, and that the electricity as you apply to vector control method and an speed sensor of controller to microprocessor, And you studied to speed, motor electricity energy control method to the algorithm and you brake a revival by regenerative braking power securities of a permanent magnet synchronous motors. It is proposed that motor control method to the algorithm you brake a revival by electricity braking power securities, you do to simulations regarding a momentum load and experiment.

Ground Altitude Measurement Algorithm using Laser Altimeter and Ultrasonic Rangefinder for UAV (레이저 고도계와 초음파 거리계를 이용한 무인항공기 지면고도측정 알고리즘 설계)

  • Choi, Kyeung-Sik;Hyun, Jung-Wook;Jang, Jae-Won;Ahn, Dong-Man;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.749-756
    • /
    • 2013
  • This paper presents an algorithm concerning the ground altitude measurement using a laser altimeter and an ultrasonic rangefinder for UAV(Unmanned Aerial Vehicle). A simple ground test conducted using the laser altimeter and ultrasonic rangefinder that are used for conducting the low altitude measurement of UAV and identify the characteristics of each sensor. Especially, the disadvantages of the laser altimeter were checked through the ground test. After that who those are participated in this paper planned the algorithm which is complemented by the ultrasonic rangefinder and the experiment was conducted. The laser altimeter and the ultrasonic rangefinder were fused by a loosely coupled method by Kalman filter. The paper shows that stable value of altitude complemented by the ultrasonic rangefinder that covers the laser altimeter's drawbacks can be measured through the ground test.

Disign of Non-coherent Demodulator for LR-WPAN Systems (LR-WPAN 시스템을 위한 비동기 복조 알고리즘 및 하드웨어 구조설계)

  • Lee, Dong-Chan;Jang, Soo-Hyun;Jung, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we present a low-complexity non-coherent demodulation algorithm and hardware architecture for LR-WPAN systems which can support the variable data rate for various applications. The need for LR-WPAN systems that can support the variable data rate is increasing due to the emergence of various sensor applications. Since the existing symbol based double correlation (SBDC) algorithm requires the increase of complexity to support the variable data rate, we propose the sample based double correlation (SPDC) algorithm which can be implemented without the increase of complexity. The proposed non-coherent demodulator was designed by verilog HDL and implemented with FPGA prototype board.

Accuracy analysis on the temperature measurement with thermistor (인공위성용 서미스터의 온도측정 정확도 분석)

  • Suk, Byong-Suk;Lee, Yun-Ki;Lee, Na-Young
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2008
  • The thermistors and AD590 are widely used for temperature measurement in space application. The resistance of thermistor will vary according to the temperature variation therefore the external voltage or current stimulus signal have to be provided to measure resistance variation. Recently high resolution electro optic camera system of satellite requires tight thermal control of the camera structure to minimize the thermal structural distortion which can affects the image quality. In order to achieve $1^{\circ}$(deg C) thermal control requirement, the accuracy of temperature measurement have to be higher than $0.3^{\circ}$(deg C). In this paper, the accuracy of temperature measurement using thermistors is estimated and analyzed.

  • PDF

Ultra-Wide Band Sensor Tuning for Localization and its Application to Context-Aware Services (위치추적을 위한 UWB 센서 튜닝 및 상황인지형 서비스에의 응용)

  • Jung, Da-Un;Choo, Young-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1120-1127
    • /
    • 2008
  • This paper presents implementation of localization system using UWB (Ultra-Wide Band) sensors and its experimental results along with development of context-aware services. In order for precise measurement of position, we experimented various conditions of pitch angles, yaw angles, number of sensors, height of tags along with measuring errors at each installation. As an application examples of the location tracking system, we developed an intelligent health training management system based on context-aware technology. The system provides appropriate training schedule to a trainee by recognizing position of the trainee and current status of gymnastic equipments and note the usage of the equipment through a personal digital assistant (PDA). Error compensation on position data and moving direction of the trainee was necessary for context-aware service. Hence, we proposed an error compensation algorithm using velocity of the trainee. Experimental results showed that proposed algorithm had made error data reduce by 30% comparing with the data without applying the algorithm.

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.