• Title/Summary/Keyword: Semiconductor sheet

Search Result 131, Processing Time 0.023 seconds

Development of rotary-magnet type magnetron source for large area sputtering on flexible substrate (대면적 플랙시블 기판용 회전자석형 마그네트론 소스 개발)

  • Cho, Chan Seob;Yun, Sung Ho;Kim, Bong Hwan;Kim, Kwang Tae;Jung, Young Chul;Lee, Jong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • In this study, a high performance rotary magnet type magnetron source for roll-to-roll sputter system has been developed. We analyzed the density of magnetic field as a function of size variation of the magnet which are in the center and edge of the target. The target efficiency showed the best result when the width of center magnet, the width of edge magnet, the angle of edge magnet, and the rotation angle of Yoke are 20mm, 10mm, $56^{\circ}$, and $16^{\circ}$, respectively. On the basis of the results of magnet array, Roll-to Roll magnetron source was fabricated and tested. The uniformity of the film thickness and that of the sheet resistance was ${\pm}1.62%$ and ${\pm}4.13%$, and the resistivity was $2.79{\times}10^{-3}W{\cdot}cm$.

Accuracy Enhancement of Output Measurement by Silicon Crystalline Photo Voltaic (PV) Module Production Process Optimization (Crystalline Silicon Photo Voltaic (PV) Module의 양산 공정 최적화에 의한 Module 출력 측정 정확성 향상)

  • Lee, Jongpil;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • In silicon crystalline PV (Photo Voltaic) industry, PV module or panel electric power is directly related to the companies' profit. Thus, many PV companies have invested and focused on R&D activities to get the higher module power. The main BOM (Bills of Material) on the module consists of PV solar cell, ribbon, EVA (Ethylene-Vinyl Acetate copolymer), glass and back sheet. Based on consistent research efforts on enhancing module power using BOM, there have been increase of around 5 watt per module every year as results. However, there are lack of studies related to enhancing accuracy of measurement. In this study, the enhancing on the metrology is investigated and the improvement shows actually contribution to company's profit. Especially, the measurement issues related to heat and to quasi state of bandgap diagram by EL(Electro Luminescence) are described in this study.

Top-emission Electroluminescent Devices based on Ga-doped ZnO Electrodes (Ga-doped ZnO 투명전극을 적용한 교류무기전계발광소자 특성 연구)

  • Lee, Wun Ho;Jang, Won Tae;Kim, Jong Su;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.44-48
    • /
    • 2017
  • We explain optical and electrical properties of top and bottom-emission structured alternating-current powder electroluminescent devices (ACPELDs) with Ga-doped ZnO(GZO) transparent electrode. The top-emission ACPELDs were layered as the metal electrode/dielectric layer/emission layer/top transparent electrode and the bottom-emission ACPELDs were structured as the bottom transparent electrode/emission layer/dielectric layer/metal electrode. The yellow-emitting ZnS:Mn, Cu phosphor and the barium titanate dielectric layers were layered through the screen printing method. The GZO transparent electrode was deposited by the sputtering, its sheet resistivity is $275{\Omega}/{\Box}$. The transparency at the yellow EL peak was 98 % for GZO. Regardless of EL structures, EL spectra of ACPELDs were exponentially increased with increasing voltages and they were linearly increased with increasing frequencies. It suggests that the EL mechanism was attributed to the impact ionization by charges injected from the interface between emitting phosphor layer and the transparent electrode. The top-emission structure obtained higher EL intensity than the bottom-structure. In addition, charge densities for sinusoidal applied voltages were measured through Sawyer-Tower method.

  • PDF

Optimization of Mg:Ag Cathodes and Effect of LiF Electron Injection Layer on the Characteristics of Top Emission Organic Light Emitting Diodes (전면 유기발광 다이오드 제작시 Mg:Ag 캐소드 최적화 및 LiF 전자주입층 유무에 따른 소자 특성에 관한 연구)

  • Song, Min Seok;Kwon, Sang Jik;Cho, Eou-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.71-74
    • /
    • 2022
  • For the process simplification in the fabrication of organic light emitting diode(OLED), top emission OLED (TEOLED) was fabricated without lithium fluoride(LiF) used as an electron injection layer (EIL). After co-deposition of Mg and Ag with a different process conditions, a cathode material adjacent to EIL was optimized when Mg and Ag have a ratio of 1:9 considering sheet resistance and transmittance. From the energy band diagram of TEOLED, band gap difference between Trisaluminium (Alq3) and Mg:Ag cathode show the difference of 0.4 eV according to the usage of LiF The fabricated TEOLED without LiF showed the improvement of 5.2 % and 2.7 % in the luminance and the current density comparing that with LiF. The results show there is no significant difference in OLED characteristics regardless of LIF layer in the TEOLED structures.

A Study on the Causes of False Alarm by NFPA921 in Semiconductor Factory (반도체공장의 NFPA921에 의한 비화재보 원인조사 방안)

  • Sang-Hyuk Hong;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.4
    • /
    • pp.87-94
    • /
    • 2023
  • This study analyzed and identified various causes of caustic alarms of 163 fire detectors that occurred from January 2019 to December 2021 at domestic semiconductor manufacturing plants equipped with about 30,000 fire detectors, and proposed a new non-fire prevention cause investigation plan by applying the NFPA 921 scientific methodology. The results of the study are as follows. First, in terms of necessary recognition and problem definition, an analog detector and an integrated monitoring system were proposed to quickly determine the location and installation space information of the fire detector. Second, in order to prevent speculative causes and errors in various analyses in terms of data analysis and hypothesis establishment, non-fire reports were classified into five by factor and defined, and the causes of occurrence by factor were classified and proposed. Finally, in terms of hypothesis verification and final hypothesis selection, a non-fire prevention improvement termination process and a final hypothesis verification sheet were proposed to prevent the cause from causing re-error.

Effect of Thermal Budget of BPSG flow on the Device Characteristics in Sub-Micron CMOS DRAMs (서브마이크론 CMOS DRAM의 소자 특성에 대한 BPSG Flow 열처리 영향)

  • Lee, Sang-Gyu;Kim, Jeong-Tae;Go, Cheol-Gi
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.132-138
    • /
    • 1991
  • A comparision was made on the influence of BPSG flow temperatures on the electrical properties in submicron CMOS DRAMs containing two BPSG layers. Three different combinations of BPSG flow temperature such as $850^{\circ}C/850^{\circ}C,\;850^{\circ}C/900^{\circ}C,\;and\;900^{\circ}C/900^{\circ}C$ were employed and analyzed in terms of threshold, breakdown and isolation voltage along with sheet resistance and contact resistance. In case of $900^{\circ}C/900^{\circ}C$ flow, the threshold voltage of NMOS was decreased rapidly in channel length less than $0.8\mu\textrm{m}$ with no noticeable change in PMOS and a drastic decrease in breakdown voltages of NMOS and PMOS was observed in channel length less than and equal to $0.7\mu\textrm{m}$ and $0.8\mu\textrm{m}$, respectively. Little changes in threshold and breakdown voltages of NMOS and PMOS, however, were shown down to channel length of $0.6\mu\textrm{m}$ in case of $850^{\circ}C/850^{\circ}C$ flow. The isolation voltage was increased with decreasing BPSG flow temperature. A significant increase in the sheet resistance and contact resistance was noticeable with decreasing BPSG flow temperature from $900^{\circ}C$ to $850^{\circ}C$. All these observations were rationalized in terms of dopant diffusion and activation upon BPSG flow temperature. Some suggestions for improving contact resistance were made.

  • PDF

Thermal Stability Improvement or Ni Germanosilicide Using NiPt/Co/TiN and the Effect of Ge Fraction (x) in $Si_{l-x}Ge_x$ (NiPt/Co/TiN을 이용한 Ni Germanosilicide 의 열안정성 향상 및 Ge 비율 (x) 에 따른 특성 분석)

  • Yun Jang-Gn;Oh Soon-Young;Huang Bin-Feng;Kim Yong-Jin;Ji Hee-Hwan;Kim Yong-Goo;Cha Han-Seob;Heo Sang-Bum;Lee Jeong-Gun;Wang Jin-Suk;Lee Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.391-394
    • /
    • 2004
  • In this study, highly thermal stable Ni Germanosilicide has been utilized using NiPt alloy and novel NiPt/Co/TiN tri-layer. And, the Ni Germanosilicide Properties were characterized according to different Ge ratio (x) in $Si_{l-x}Ge_x$ for the next generation CMOS application. The sheet resistance of Ni Germanosilicide utilizing pure-Ni increased dramatically after the post-silicidation annealing at $600^{\circ}C$ for 30 min. Moreover, more degradation was found as the Ge fraction increases. However, using the proposed NiPt/Co/TiN tri-layer, low temperature silicidation and wide range of RTP process window were achieved as well as the improvement of the thermal stability according to different Ge fractions by the subsequent Co and TiN capping layer above NiPt on the $Si_{l-x}Ge_x$. Therefore, highly thermal immune Ni Germanosilicide up to $600^{\circ}C$ for 30 min is utilized using the NiPt/Co/TiN tri-layer promising for future SiGe based ULSI technology.

  • PDF

Comparison of van der Pauw method with FPP method in Sheet Resistance Measurements of Semiconductor Wafer (van der Pauw와 four point probe 방법에 의한 반도체 웨이퍼의 면저항 비교)

  • Kang, J.H.;Kim, H.J.;Yu, K.M.;Han, S.O.;Kim, J.S.;Park, K.S.;Koo, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1634-1636
    • /
    • 2004
  • 반도체 웨이퍼의 면저항을 정밀 측정하는 대표적인 두가지 방법인 4탐침(four point probe)방법과 van der Pauw방법으로 반도체 웨이퍼의 면저항을 비교평가 하였다. 4탐침방법에 의한 측정 시스템을 사용하여 웨이퍼의 전체 면에 대하여 면저항을 측정하고, 같은 웨이퍼의 가장자리 네 지점에 탐침 전극을 구성한 후 van der Pauw 방법으로 면저항을 측정한 결과 4탐침 방법에 의한 측정결과를 기준으로 1 %이하의 일치도를 나타냈다.

  • PDF

Transient Simulation of Graphene Sheets using a Deterministic Boltzmann Equation Solver

  • Hong, Sung-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.288-293
    • /
    • 2017
  • Transient simulation capability with an implicit time derivation method is a missing feature in deterministic Boltzmann equation solvers. The H-transformation, which is critical for the stable simulation of nanoscale devices, introduces difficulties for the transient simulation. In this work, the transient simulation of graphene sheets is reported. It is shown that simulation of homogeneous systems can be done without abandoning the H-transformation, as much as a specially designed discretization method is employed. The AC mobility and step response of the graphene sheet on the $SiO_2$ substrate are simulated.

Influence of Temperature and Pressure on Graphene Synthesis by Chemical Vapor Deposition (CVD법을 이용한 그래핀합성에 미치는 온도와 압력의 영향)

  • Lee, Eun Young;Kim, Sungjin;Jun, Heung-Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.7-16
    • /
    • 2015
  • The fabrication of high quality graphene using chemical vapor deposition (CVD) method for application in semiconductor, display and transparent electrodes is investigated. Temperature and pressure have major impact on the growth of graphene. Graphene doping was obtained by deposition of $MoO_3$ thin films using thermal evaporator. Bilayer graphene and the metal layer graphene were obtained. According to the behavior of graphene growth P-type doping was confirmed. Graphene obtained through experiments was analyzed using optical microscopy, Raman spectroscopy, UV-visible light spectrophotometer, 4-point probe sheet resistance meter and atomic force microscopy.