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Abstract—Transient simulation capability with an 
implicit time derivation method is a missing feature in 
deterministic Boltzmann equation solvers. The H-
transformation, which is critical for the stable 
simulation of nanoscale devices, introduces difficulties 
for the transient simulation. In this work, the 
transient simulation of graphene sheets is reported. It 
is shown that simulation of homogeneous systems can 
be done without abandoning the H-transformation, as 
much as a specially designed discretization method is 
employed. The AC mobility and step response of the 
graphene sheet on the SiO2 substrate are simulated. 
 
Index Terms—Transient simulation, deterministic 
Boltzmann equation solver, Boltzmann transport 
equation, graphene  

I. INTRODUCTION 

The Boltzmann transport equation plays a central role 
in the semi-classical transport theory. Since deterministic 
Boltzmann equation solvers have many advantages over 
the conventional Monte Carlo method, they have gained 
research interest recently [1]. In addition to the steady-
state analysis, small-signal [1, 2] and noise [3, 4] 
analyses are also possible. 

However, compared to the traditional drift-diffusion-
based device simulators, an important simulation feature 
– the transient simulation capability – is seldom 
exploited in the deterministic Boltzmann solvers [5]. It 

restricts application area of the deterministic Boltzmann 
solver significantly. For example, the plasma instability 
in the quasi-ballistic transistor channel [6, 7] requires an 
accurate device solver with the transient capability. 

Although the transient simulation of the double-gate 
MOSFET using a deterministic Boltzmann equation 
solver has been reported recently [8], a special time-
marching scheme is adopted. Other attempts for solving 
the transient Boltzmann transport equation using 
deterministic solvers [9, 10] adopt WENO (Weighted 
Essentially Non-Oscillatory) scheme, whose time-
marching scheme is much different from the implicit 
time derivation method, typically used in the 
conventional device simulators.  

In this work, our recent effort to develop a 
deterministic Boltzmann equation solver with the 
transient simulation capability is presented. In addition to 
the conference presentation [11], actual simulation 
results are added. Due to its high carrier mobility and 
large saturation velocity, graphene has been considered 
as a very promising candidate for high-frequency devices 
[12]. However, simulation of graphene devices with the 
conventional drift-diffusion model [13] is highly 
nontrivial because of the unique band structure. In this 
sense, graphene devices are good model systems to test 
the Boltzmann equation solver. In this preliminary study, 
the homogenous graphene sheet is chosen as the system-
under-simulation.  

The structure of the paper is as follows: In Section II, 
the simulation framework is briefly explained. The DC 
simulation results are shown in Section III. The transient 
simulation results are presented in Section IV. Finally, 
conclusions are made in Section V. 
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II. SIMULATION FRAMEWORK 

Let us consider a phase space, ( ),r k , where r  is the 

position vector and k  is the momentum vector. The 
Boltzmann transport equation reads: 
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where ( ), , tf r k  is the distribution function, L  is the 

free-streaming operator, and { }S f  is the scattering 

integral. The free-streaming operator contains the partial 
derivatives with respect to the position and momentum: 
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where v  is the group velocity, h  is the reduced 
Planck constant, and F  is the force. The force is 
calculated from the electric field. 

Note that the phase space is usually re-written in a way 
to show the kinetic-energy, e , explicitly [14]. For 
example, in the case of the two-dimensional momentum 

space, the phase space is written as ( ), ,e qr . q  is an 

angle variable in the kinetic energy space, which is a 
function of k . In the kinetic-energy-based representation, 
the free-streaming operator in (2) is written as 

 

 ( ) ( )r k

1, , ,
f f

Lf t f e e
e ee q q

e q
¶ ¶

= ×Ñ + × + × Ñ
¶ ¶

r v F v F
h

,  

  (3) 
 

where fe  is the distribution function in the kinetic-
energy-based representation. The second term in the 
right-hand side is related with the partial derivative with 
respect to the kinetic energy. It is proportional to the 
force. 

As discussed in [5], the deterministic Boltzmann 
equation solvers have been mainly employed for the 
steady-state simulation. The primary reason is the 
existence of a strong electric field inside the device. 
When the electric field is strong, the second term in (3) 
plays a significant role. Without a proper numerical 
treatment, combination of two partial derivative terms – 
first two terms in (3) – introduces a numerical instability 

[14]. 
In order to eliminate the numerical instability, the H-

transformation [15] has been proposed. The kinetic 
energy variable is transformed to the total energy 
variable, H. In this case, the free-streaming operator is 
written as 
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where Hf  is the distribution function in the total-
energy-based representation and the gradient in the real 
space must be carried out consistently in that 
representation. Since the partial derivative with respect to 
the kinetic energy disappears completely, the numerical 
stability of the solver is greatly improved. For nanoscale 
devices with a strong electric field, the H-transformation 
seems to be mandatory for any practical simulation. 

When applied to the transient simulation, however, the 
H-transformation introduces a serious difficulty. Since 
the electrostatic potential changes as the time elapses, the 
time derivative in the total-energy-based representation 
contains an additional term. In the two-dimensional 
momentum space, the time derivative reads: 
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where q  is the elementary charge and  f  is the 
electrostatic potential. Therefore, when the electrostatic 

Fig. 1. Three-point discretization method for the transient 
simulation of a homogeneous system. Dots represent the 
discretized points. 
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potential is time-varying, the partial derivative with 
respect to the total energy appears again. It degrades the 
numerical stability of the solver significantly.  

Development of a general scheme for the transient 
simulation, while keeping the H-transformation, would 
be beyond the scope of this paper. Fortunately, as much 
as we consider homogeneous systems like graphene 
sheets, we can set the electrostatic potential freely. Using 
this observation, a three-point discretization method is 
used in this work as shown in Fig. 1. The center node is 
surrounded by two neighboring nodes (left and right 
ones). When the applied electric field is time-varying, the 
distances between the center node and the neighboring 
nodes are adjusted in such a way that the potential 
difference between two adjacent nodes is exactly 
matched to the energy spacing,  

 

 2 1 3 2- = - =
Δ

x
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,        (6) 

 
where ΔH  is the uniform energy spacing. Using this 
trick, no interpolation of the distribution function is 
required, because the following relations are satisfied:  
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Moreover, at the center node, the electrostatic potential 

itself is fixed. Therefore, the second term in (5) is 
eliminated. As a result, the time derivative becomes 
much simpler, 
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which is helpful for implementing the transient 
simulation capability. 

III. DC SIMULATION 

Our in-house deterministic Boltzmann equation solver 
for the graphene sheet [16] has been extended to simulate 
the transient response. In this Section, for the sake of 
readability, a general description about the solver and the 
physical models is reproduced briefly.  

The Boltzmann equation solver is based on the Fourier 

harmonics expansion [1]. In this expansion, angle-
dependent transport parameters (such as the density-of-
states, the scattering rate, and the distribution function) 
are expanded with Fourier harmonics. The H-
transformation is adopted as a stabilizing scheme. The 
three-point discretization method shown in Section II is 
used. 

An n-type sample is considered. The linear dispersion 
relation of the graphene sheet is assumed. For an electron 
whose momentum is given by k , its kinetic energy, kε , 
is given by 

 

 = khk Fε v ,               (9) 
 

where h  is the reduced Planck constant. The Fermi 
velocity ( Fv ) of 106 m sec-1 is used.  

The intrinsic phonon scatterings (intravalley acoustic 
phonons, optical phonons, and intervalley acoustic 
phonons) are included in the simulation. In addition to 
those intrinsic phonon scatterings, the remote phonon 
scattering is also included in order to consider the impact 
of the substrate. The transition rate from k  to 'k , 

( )|S k k' , is given by 
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where ±A  is a proportional coefficient, = -¢k kq  is 

the momentum transfer, d  is the distance between the 

graphene layer and the substrate, ( )ò q  is the dielectric 

function, θ  is the angle difference, hω  is the phonon 

energy, and ( )×δ  is the Dirac delta function. The upper 

sign is for the phonon absorption, while the lower one is 
for the phonon emission. Since the remote phonon 
scattering is anisotropic, its transition rate is calculated 
directly by numerical integration. For this purpose, the 
angle variable, ,θ  is uniformly discretized. The number 
of discretized points for the angle variable is denoted as 
Ntheta.  

Model parameters for above-mentioned scattering 
mechanisms are taken from [17] and [18] without 
modification.  
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Fig. 2 shows the drift velocity of the graphene on the 
SiO2 substrate as a function of the applied electric field. 
The electron sheet density is 5x1011 cm-2. Due to high 
mobility of the graphene sheet, the drift velocity rapidly 
increases at low-field regime. The maximum velocity is 
about 6x107 cm sec-1. Impact of the maximum order of 
Fourier harmonics (mmax) is tested. When mmax is 1, 
the drift velocity is overestimated. However, already with 
mmax = 3, an accurate result is obtained. It has been 
found that the drift velocity does not change for the 
tested values of Ntheta (10, 20, and 40). The difference 
between Ntheta = 10 and Ntheta = 20 is around 0.01 %. 

IV. TRANSIENT SIMULATION 

In this Section, the transient response of graphene 
sheets on the SiO2 substrate is simulated. Values of 
mmax and Ntheta are 3 and 10, respectively. 

For the time discretization, the backward Euler method 
is used. In order to minimize the numerical damping due 
to the coarse time step, 100 time points are simulated for 
every period.  

First, the ac mobility of the graphene sheet is 
calculated. Instead of relying on the small-signal analysis, 
the full transient simulation has been performed and the 
simulated results are collected. A sufficiently long 
simulation (10 periods) has been performed for each case 
in order to eliminate the effect of initial transient 
behavior. Two DC operating points, 1 kV cm-1 and 

10 kV cm-1, are selected. Note that a negative differential 
mobility is observed at 10 kV cm-1, as shown in Fig. 2. 
The amplitude of sinusoidal excitation is kept as a small 
value of 10 V cm-1. 

Fig. 3 shows the AC component of the drift velocity as 
a function of the normalized period. The excitation 
frequency is 10 GHz, which is sufficiently low. At 
1 kV cm-1, the AC drift velocity is almost in-phase with 
the sinusoidal excitation. However, at 10 kV cm-1, the 
AC drift velocity is 180° out of phase. It is due to the 
negative differential mobility. In both cases, the 
simulated amplitudes are well matched to the ones 
calculated from the DC results shown in Fig. 2. 

Fig. 4 shows the frequency dependence of the AC drift 
velocity. The DC electric field is 10 kV cm-1. When the 
excitation frequency is increased to 1 THz, the amplitude 
of the AC drift velocity is also increased and the phase 
shift is clearly observed. For even higher frequency (10 
THz), the amplitude of the AC drift velocity drops again. 
Note that such a behavior is not observed for near-
equilibrium cases.  

Fig. 5 shows the magnitude of AC mobility as a 
function of the excitation frequency. At 10 kV cm-1, the 
AC mobility clearly shows its maximum value around 
2 THz.  

Next, the step response of the graphene sheet is 
calculated. To see the large-signal effect, the electric 
field is increased from 10 V cm-1 (which is almost 
negligible) to 10 kV cm-1 linearly. Various ramping 
speeds have been tested. Fig. 6 shows the drift velocity 

 

Fig. 2. Drift velocity as a function of the applied electric field 
for electron density of 5x1011 cm-2. The monolayer graphene on 
the SiO2 substrate is assumed.  
 

 

Fig. 3. AC component of the drift velocity as a function of the 
normalized period. Only the first five periods are shown for 
clarity. Two DC operating points are considered. The excitation 
frequency is 10 GHz. 
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as a function of normalized time. The time is normalized 
using the duration of ramping period. For slow ramping, 
the quasi-static behavior is clearly observed. However, 
for faster ramping, the strong non-quasistatic response is 
obtained. Especially for cases with ramping period 
shorter than 10 psec, strong velocity overshoot is 
observed. 

Direct extension of the proposed discretization scheme 
to the general device simulation seems to be difficult due 
to the time-varying potential inside the device. 
Introduction of a certain interpolation scheme for the 
distribution function is unavoidable. The numerical 
properties of the transient simulation will heavily depend 

on the quality of interpolation scheme.  

VI. CONCLUSIONS 

In order to perform the transient simulation using a 
deterministic Boltzmann equation solver, it is required to 
treat the time derivative properly. It has been shown that 
simulation of homogeneous systems can be done without 
abandoning the H-transformation, as much as a specially 
designed discretization method is employed. According 
to the proposed method, neither the time derivative nor 
the free-streaming operator couples two nodes with 
different H-values. As examples, the AC mobility and 
step response of the graphene sheet have been calculated.  
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