• Title/Summary/Keyword: Semiconductive layer

Search Result 32, Processing Time 0.022 seconds

Adhesion Characteristics of Semiconductive and Insulating Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리에 의한 반도전-절연 실리콘 고무의 접착 특성)

  • Lee Ki- Taek;Huh Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2006
  • In this work, the effects of plasma treatment on surface properties of semiconductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles, The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths, The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds(SiOx, x=3${\~}$4) increased, It is thought that semiconductive silicone rubber surfaces treated with plasma discharge led to an increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. However, the oxygen plama for 20 minute produces a damaged oxidized semiconductive silicone rubber layer, which acts as a weak layer producing a decrease in T-peel strength, These results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semiconductive silicone rubber.

Adhesion and Recovery of Semiconductive Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리된 반도전성 실리콘 고무의 회복현상 및 접착특성)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Seo, Yu-Jin;Hwang, Cheong-Ho;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.147-148
    • /
    • 2005
  • In this work, recovery of semiconductive silicone rubber on oxygen plasma treatment was investigated in terms of X-ray photoelectron spectroscopy(XPS). The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths. As a result, surface methyl groups is removed and an oxidized layer containing Si atoms bound to 3 or 4 oxygens appears. The surface is later covered by a very thin layer due to migration of low-molecular-weight components from the bulk, resulting in decreasing the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber these results are probably due to reorientation of polar groups or migration of low-molecular-weight.

  • PDF

The Effects of Interfacial on the Electrical Properties in PET Films (PET 필름의 전기적 특성에 미치는 계면효과)

  • Gang, Mu-Seong;Lee, Chang-Hun;Park, Su-Gil;Park, Dae-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.281-284
    • /
    • 1999
  • In this paper, the electrical conduction, breakdown strength and dielectric properties were investigated in the interfaces of PET films. The volume resistivity and breakdown strength were decreased; especially the specimens with semiconductive layer showed the lowest breakdown strength. This decrease of electrical properties was appeared by increasing charge density in inhomogeneous layer of PET. The dielectric properties of PET did not show significant difference with PET/PET but the films with semiconductive interface layer showed the increase in capacitance and $tan\delta$ was affected by the PET rather than semiconductive layer. It is assumed that the variation of $tan\delta$ was affected by the dielectric polarization and the leakage current(charge).

  • PDF

Adhesion and Electrical Performance by Plasma Treatment of Semiconductive Silicone Rubber (반도전성 실리콘 고무의 플라즈마 표면처리에 따른 접착특성과 절연성능)

  • Hwang, Sun-Mook;Lee, Ki-Taek;Hong, Joo-Il;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.450-456
    • /
    • 2005
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. The modifications produced on the silicone surface by oxygen plasma were accessed using ATR-FTIR, contact angle and Surface Roughness Tester. Adhesion was obtained from T-peel tests of semiconductive layer haying different treatment durations. In addition, ac breakdown test was carried out for elucidating the change of electrical property with duration of plasma treatment. From the results, the treatment in the oxygen plasma produced a noticeable increase in surface energy, which can be mainly ascribed to the creation of O-H and C=O. It is observed that adhesion performance was determined by surface energy and roughness level of silicone surface. It is found that at dielectric strength was increased with improving the adhesion between the semiconductive and insulating interface.

The Effect of Plasma Treatment on Surface Properties and Adhesion Characteristics of semiconductive Silicone Rubber (반도전성 실리콘 고무의 표면 특성과 접착특성에 미치는 플라즈마 처리의 영향)

  • Hwang, Sun-Mook;Hong, Joo-Il;Hwang, Cheong-Ho;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.254-255
    • /
    • 2005
  • In this work, the effects of plasma treatment on surface properties of semi conductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy(XPS). The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths. As a result, semiconductive silicone rubber surfaces treated with plasma discharge led to and increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. these results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semi conductive silicone rubber.

  • PDF

Adhesion and Electrical Performance by Roughness on Semiconductive-Insulation Interface Layer of Silicone Rubber (거칠기에 따른 반도전-절연 계면층에서 접착특성과 절연성능)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.78-81
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. Surface structure and adhesion of semiconductive silicon rubber by surface asperity was obtained from SEM and T-peel test. In addition, ac breakdown test was carried out for elucidating the change of electrical property by roughness treatment. From the results, Adhesive strength of semiconductive-insulation interface was increased with surface asperity. Dielectric breakdown strength by surface asperity decreased than initial Specimen, but increased from Sand Paper #1200. According to the adhesional strength data unevenness and void formed on the silicone rubber interface expand the surface area and result in improvement of adhesion. Before treatment Sand Paper #1200, dielectric breakdown strength was decreased by unevenness and void which are causing to have electric field mitigation small. After the treatment, the effect of adhesion increased dielectric breakdown strength. It is found that ac dielectric breakdown strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Adhesion and Electrical Performance by Plasma Treatment on Semiconductive-Insulation Interface Layer of Silicone Rubber (실리콘 고무의 플라즈마 표면처리된 반도전-절연계면 처리에 따른 접착특성과 절연성능)

  • Hwang, Sun-Mook;Lee, Ki-Taek;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. The modifications produced on the silicone surface by oxygen plasma were accessed using ATR-FTIR, contact angle and AFM. Adhesion was obtained from T-peel tests of semiconductive layer having different treatment durations. In addition, ac breakdown test was carried out for elucidating the change of electrical property with duration of plasma treatment. From the results, the treatment in the oxygen plasma produced a noticeable increase in surface energy, which can be mainly ascribed to the the creation of O-H and C=O. It is observed that adhesion performance was determined by not surface energy but roughness level of silicone surface. It is found that ac dielectric strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Effect of CNTs on Electrical Properties and Thermal Expansion of Semi-conductive Compounds for EHV Power Cables

  • Jae-Gyu Han;Jae-Shik Lee;Dong-Hak Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.603-608
    • /
    • 2023
  • Carbon black with high purity and excellent conductivity is used as a conductive filler in the semiconductive compound for EHV (Extra High Voltage) power cables of 345 kV or higher. When carbon black and CNT (carbon nanotube) are applied together as a conductive filler of a semiconductive compound, stable electrical properties of the semiconductive compound can be maintained even though the amount of conductive filler is significantly reduced. In EHV power cables, since the semi-conductive layer is close to the conductor, stable electrical characteristics are required even under high-temperature conditions caused by heat generated from the conductor. In this study, the theoretical principle that a semiconductive compound applied with carbon black and CNT can maintain excellent electrical properties even under high-temperature conditions was studied. Basically, the conductive fillers dispersed in the matrix form an electrical network. The base polymer and the matrix of the composite, expands by heat under high temperature conditions. Because of this, the electrical network connected by the conductive fillers is weakened. In particular, since the conductive filler has high thermal conductivity, the semiconductive compound causes more thermal expansion. Therefore, the effect of CNT as a conductive filler on the thermal conductivity, thermal expansion coefficient, and volume resistivity of the semiconductive compound was studied. From this result, thermal expansion and composition of the electrical network under high temperature conditions are explained.

An Improvement of the Characteristics of DSSC by Each Layers - II (- Property Improvement and Measuring System) (각 층에 따른 염료감응형 태양전지의 특성 개선 - II (-특성증진 및 측정기를 중심으로))

  • Mah, Jae-Pyung;Park, Chi-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.65-71
    • /
    • 2011
  • Properties of each layer in DSSC were investigated to improve solar cell characterstics. Also in this study, low costsolar simulator system is fabricated and used. Efficiency of DSSC is better in the case of thinner semiconductive layer, because thick semiconductive layer is acted as resistor. Sc-doped ZnO thin films showed better electrical property by proper donor doping effect. Among the dyes, DSSC containing N719 showed higher efficiency, because N719 have smaller electron affinity and shallow band gap.

Effect of MoO3 Addition and Their Frequency Characteristics in Nb+5 doped Semiconductive BaTiO3 Ceramics (Nb+5첨가된 반도성 BaTiO3세라믹스에서 MoO3의 영향과 주파수 특성)

  • 윤상옥;정형진;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 1987
  • Effect of MoO3 additiion on the semiconductive BaTiO3 ceramics doped with 0.2 mole% Nb2O5 and their frequency characteristics have been investigated on the view of intergranular barrier layer model through the observation of changes in their electrical properties. The resistivity increases with the increase of MoO3 addition, but the capacitance, the frequency dependence of capacitance and the effect of positive temperature coefficient of resistivity (PTCR) decrease. It is explained by the possible increase in the thickness of potential barrier due to the formation of insulating layer and thus decrease in the degree of energy band bending. Both the PTCR effect and resistivity decrease with the increase of frequency due to the possible elimination of barrier layer at the grain boundary.

  • PDF