• Title/Summary/Keyword: Secure Power Control

Search Result 162, Processing Time 0.022 seconds

A Proposal of Risk Management Framework for Design as a Secure Power Control System (안전한 전력 제어시스템 설계를 위한 위험관리 프레임워크 제안)

  • Park, Jun Yong;Shin, Sumin;Song, Kyoung-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.425-433
    • /
    • 2016
  • In smart grid, enhancement of efficiency and interoperability of electric power system is achieved through the connection with outer network, and this induces that power grid system is threatened increasingly, becomes the main target of cyber terrorism, and is sincerely required to design the secure power system. Although SSDLC(Secure System Development Life Cycle) is used for risk management from the design phase, traditional development life cycle is somewhat limited for satisfaction of information security indicator of power control system. Despite that power control system should reflect control entities of information security considering its own characteristics, validation elements are insufficient to apply into real tasks based on existing compliance. To make design of diagnostic model and assessment process for power control system possible and to give a direction for information security and present related indicator, we propose the new risk management framework of power control system which is applied operational security controls and standard architecture presented by IEC 62351 TC 57 with enterprise risk management framework.

A study on vulnerabilities of serial based DNP in power control fields (전력 제어시스템의 시리얼 기반 DNP통신 취약점에 관한 연구)

  • Jang, Ji Woong;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1143-1156
    • /
    • 2013
  • Power control system like SCADA(Supervisory Control And Data Acquisition) is gathering information using RS232C and low-speed analog communication network. In general, these methods are known as secure because of the secure characteristics from the analog based communication network and serial communication. In this study, first we build DNP communication environment using commercial power control simulator and find some vulnerabilities by testing from the viewpoint of confidentiality, integrity and availability. Consequently, we see the necessity of a valid method for authentication and data encryption when gathering information, even though that is known as secure so far. Discussion of needs of DNP authentication and data encryption is started about several years ago, but there is still nowhere applied that on real environment because the current methods can not fully meet the security requirements of the real environment. This paper suggests a solution to the vulnerabilities, and propose some considerations for enhancing power control system's security level by applying DNP authentication and data encryption.

Study on Power Control and Optimal Management for Dog-Horse Robot (견마로봇의 전력제어 및 최적 운용에 대한 연구)

  • Kang, Tae-Ha;Huh, Jin-Wook;Kim, Jun;Kang, Sin-Cheon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.343-348
    • /
    • 2010
  • Recently, unmanned electric vehicles are increasingly interested among all of the world since they can provide low exhaust gas, high efficiency and high mobility. To exploit their silent maneuver and high mobility, unmanned electric vehicles have been developed since early 1980's for military. However, it is not easy to design and control a power system satisfying operating duration and mobility performance requirements based on various mission profiles for military use under the conditions of limited space and weight. Moreover it is also necessary to prevent over-charge, over-discharge and voltage unbalance between cells of battery to secure high voltage battery which is serially connected with muti-cells. In this paper, we presents power control and optimal management method for the dog-horse robot which adopts a electric power system and suggests a guide-line to manage and control to secure high voltage battery.

Design of Secure Protocol based on trust model and trust values for Ubiquitous Sensor Networks (Ubiquitous Sensor Network에서 안전성 증가를 위한 신뢰모델과 신뢰값에 관한 프로토콜 설계)

  • Jang, Kun Won;Suh, Jang Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.3
    • /
    • pp.9-18
    • /
    • 2008
  • Mobile devices do not need the fixed network infrastructure in ad-hoc network, these devices communicate each other through the distributed control. Accordingly, mobile devices can discover several services using dynamic searching method and provide safely public ownership of these services. Ad-hoc network needs the distributed control and topology of dynamic network because the limited power for processing and network communication. This paper is devoted to provide the secure protocol that provides efficient services discovery using SDP(Service Discovery Protocol) and considers the security requirements. Proposed protocol provides the distributed control based on PKI without central server, the discovery of trusted service, secure telecommunication, the identification among mobile devices, and service access control by user authority.

Study on PWM Control in Inverter Resistance Spot Welding (인버터 저항 점용접 장치의 PWM제어에 관한 연구)

  • Kwon Hyo-Chul;Choi Yong-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.169-171
    • /
    • 2006
  • Nowadays, inverter welding is risen in spot welding, because can secure productivity. This study made changed output wave form of inverter welding equipment by several forms and measured electric current that pass to the second of transformer for welding. Purpose of study is finding electric current of most suitable form. Also, studied applies PID control in electric current control of inverter resistance weld device and heightens electric current precision.

  • PDF

Remote user Access control Mechanism in Smart Grid environments (스마트 그리드 환경을 위한 원격 사용자 접근제어 메커니즘)

  • Oh, Soo-Hyun;Eun, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.416-422
    • /
    • 2011
  • Smart grid is the next generation intelligent power grid that combines the existing electric power infrastructure and information infrastructure. It can optimize the energy efficiency in both directions, suppliers and power consumers to exchange information in real time. In smart grid environments, with existing network security threats due to the smart grid characteristics, there are additional security threats. In this paper, we propose a security mechanism that provides mutual authentication and key agreement between a remote user and the device. The proposed mechanism has some advantages that provides secure mutual authentication and key agreement and secure against a replay attack and impersonation attacks.

CIM and OPC-UA based Integrated Platform Development for ensuring Interoperability

  • Kim, Jun-Sung;Park, Hee-Jeong;Choi, Seung-Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.233-244
    • /
    • 2016
  • Smart grid is called it as a system of systems. There are diverse types of systems in smart grid environment. Therefore, one of key factors to achieve smart grid successfully is interoperability among diverse systems. To secure interoperability, smart grid operating system should be developed complied with standards in terms of the data representation and communication. Common Information Model (CIM) and OLE Process for Control - Unified Architecture (OPC-UA) are the representative international standards in smart grid domain. Each standard defines data representation and communication by providing common information model and the unified architecture. In this paper, we explain a smart grid platform that we have developed to comply with CIM and OPC-UA standards for secure interoperability among numerous legacy systems.

Coordination Control of Voltage Between STATCOM and Reactive Power Compensation Devices in Steady-State

  • Park, Ji-Ho;Baek, Young-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.689-697
    • /
    • 2012
  • This paper proposes a new coordinated voltage control scheme between STATCOM (Static Synchronous Compensator) and reactive power compensation devices, such as shunt elements(shunt capacitor and shunt reactor) and ULTC(Under-Load Tap Changer) transformer in a local substation. If STATCOM and reactive power compensators are cooperatively used with well designed control algorithm, the target of the voltage control can be achieved in a suddenly changed power system. Also, keeping reactive power reserve in a STATCOM during steady-state operation is always needed to provide reactive power requirements during emergencies. This paper describes the coordinative voltage control method to keep or control the voltage of power system in an allowable range of steady-state and securing method of momentary reactive power reserve using PSS/E with Python. In the proposed method of this paper, the voltage reference of STATCOM is adjusted to keep the voltage of the most sensitive bus to the change of loads and other reactive power compensators also are settled to supply the reactive power shortage in out range of STATCOM to cope with the change of loads. As the result of simulation, it is possible to keep the load bus voltage in limited range and secure the momentary reactive power reserve in spite of broad load range condition.

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.